0

I'm using the STM32F3Discovery board and codec CS5343 to implement this project. It's almost completed, but the output is not smooth. It is looking like a step deformation.

Example: 100 Hz sine wave (the result of processed, two's complement and shift one bit)

Enter image description here

Try to use the logic analyzer to retrieve the I²S signal at the same time, but the result is smooth and pure. And different from the output of data of I²S DMA via CDC.

Why are the results different? I think the results for both should be the same.

Raw data: Left (retrieved by the logic analyzer). Right (output of USB CDC)

Enter image description here

I'm trying to change the configuration of STM32 I²S, but the result is not different. The output signal also has a step formation.

File main.c

uint16_t SignalTmp[32] = {0x00};
uint8_t BufSize = 4;
uint32_t lSample = 0, rSample = 0;
uint8_t FLAG_half = 0, FLAG_comp = 0;

int main(void)
{
  HAL_Init();

  /* Configure the system clock */
  SystemClock_Config();

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_SPI1_Init();
  MX_TIM2_Init();
  MX_TIM3_Init();
  MX_TIM4_Init();
  MX_I2S2_Init();
  MX_UART4_Init();
  MX_USART2_UART_Init();
  MX_USB_DEVICE_Init();
  /* USER CODE BEGIN 2 */
  HAL_TIM_Base_Start_IT(&htim3);
  HAL_TIM_Base_Start_IT(&htim4);
  HAL_I2S_Receive_DMA(&hi2s2, (uint16_t *)&SignalTmp[0], BufSize);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    if (HAL_GPIO_ReadPin(BT_KEY_GPIO_Port, BT_KEY_Pin) == 1)
      ButtonPressed = 1;

    if (ButtonPressed)
    {
      if (!TransferFlag)
      {
        HAL_TIM_Base_Start_IT(&htim2);
        HAL_GPIO_WritePin(LD7_GPIO_Port, LD7_Pin, GPIO_PIN_SET);
      }
      else
      {
        HAL_TIM_Base_Stop_IT(&htim2);
        HAL_GPIO_WritePin(LD7_GPIO_Port, LD7_Pin, GPIO_PIN_RESET);
        HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
        HAL_GPIO_WritePin(LD5_GPIO_Port, LD5_Pin, GPIO_PIN_RESET);
      }

      TransferFlag ^= 1;
      ButtonPressed = 0;
    }
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  }
  /* USER CODE END 3 */
}

/* USER CODE BEGIN 4 */
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
  memcpy(&lSample, &SignalTmp[0], 4);
  memcpy(&rSample, &SignalTmp[2], 4);
  FLAG_half = 1; // Fill buffer half
}

void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
  memcpy(&lSample, &SignalTmp[4], 4);
  memcpy(&rSample, &SignalTmp[6], 4);
  FLAG_comp = 1;
}

File i2s.c

  void MX_I2S2_Init(void)
  {
    hi2s2.Instance = SPI2;
    hi2s2.Init.Mode = I2S_MODE_MASTER_RX;
    hi2s2.Init.Standard = I2S_STANDARD_PHILIPS;
    hi2s2.Init.DataFormat = I2S_DATAFORMAT_24B;
    hi2s2.Init.MCLKOutput = I2S_MCLKOUTPUT_ENABLE;
    hi2s2.Init.AudioFreq = I2S_AUDIOFREQ_48K;
    hi2s2.Init.CPOL = I2S_CPOL_HIGH;
    hi2s2.Init.ClockSource = I2S_CLOCK_SYSCLK;
    hi2s2.Init.FullDuplexMode = I2S_FULLDUPLEXMODE_ENABLE;
    if (HAL_I2S_Init(&hi2s2) != HAL_OK)
    {
      Error_Handler();
    }
  }

  void HAL_I2S_MspInit(I2S_HandleTypeDef *i2sHandle)
  {
    GPIO_InitTypeDef GPIO_InitStruct = {0};
    if (i2sHandle->Instance == SPI2)
    {
      /* USER CODE BEGIN SPI2_MspInit 0 */

      /* USER CODE END SPI2_MspInit 0 */
      /* I2S2 clock enable */
      __HAL_RCC_SPI2_CLK_ENABLE();

      __HAL_RCC_GPIOB_CLK_ENABLE();
      __HAL_RCC_GPIOC_CLK_ENABLE();

      /** I2S2 GPIO Configuration
      PB12     ------> I2S2_WS
      PB13     ------> I2S2_CK
      PB14     ------> I2S2_ext_SD
      PB15     ------> I2S2_SD
      PC6     ------> I2S2_MCK
      */

      GPIO_InitStruct.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
      GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
      GPIO_InitStruct.Pull = GPIO_PULLUP;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
      GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
      HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

      GPIO_InitStruct.Pin = GPIO_PIN_6;
      GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
      GPIO_InitStruct.Pull = GPIO_PULLUP;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
      GPIO_InitStruct.Alternate = GPIO_AF6_SPI2;
      HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

      /* I2S2 DMA Init */
      /* SPI2_RX Init */
      hdma_spi2_rx.Instance = DMA1_Channel4;
      hdma_spi2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
      hdma_spi2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
      hdma_spi2_rx.Init.MemInc = DMA_MINC_ENABLE;
      hdma_spi2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
      hdma_spi2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
      hdma_spi2_rx.Init.Mode = DMA_CIRCULAR;
      hdma_spi2_rx.Init.Priority = DMA_PRIORITY_HIGH;
      if (HAL_DMA_Init(&hdma_spi2_rx) != HAL_OK)
      {
        Error_Handler();
      }

      __HAL_LINKDMA(i2sHandle, hdmarx, hdma_spi2_rx);

      /* SPI2_TX Init */
      hdma_spi2_tx.Instance = DMA1_Channel5;
      hdma_spi2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
      hdma_spi2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
      hdma_spi2_tx.Init.MemInc = DMA_MINC_ENABLE;
      hdma_spi2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
      hdma_spi2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
      hdma_spi2_tx.Init.Mode = DMA_CIRCULAR;
      hdma_spi2_tx.Init.Priority = DMA_PRIORITY_HIGH;
      if (HAL_DMA_Init(&hdma_spi2_tx) != HAL_OK)
      {
        Error_Handler();
      }

      __HAL_LINKDMA(i2sHandle, hdmatx, hdma_spi2_tx);

      /* I2S2 interrupt Init */
      HAL_NVIC_SetPriority(SPI2_IRQn, 0, 0);
      HAL_NVIC_EnableIRQ(SPI2_IRQn);
      /* USER CODE BEGIN SPI2_MspInit 1 */

      /* USER CODE END SPI2_MspInit 1 */
    }
  }

File stm32f3xx_it.c

uint8_t ABuf[64] = {0x00};
uint8_t BBuf[64] = {0x00};

void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
  if (TX_Flag)
  {
    if (NextBuf)
      CDC_Transmit_FS(&ABuf, 64);
    else
      CDC_Transmit_FS(&BBuf, 64);

    TX_Flag = 0;
  }
  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

/**
 * @brief This function handles TIM3 global interrupt.
 */
void TIM3_IRQHandler(void)
{
  /* USER CODE BEGIN TIM3_IRQn 0 */
  #if 1
    #ifdef SIMULATOR
      SignalAvg = GenerateSignal();
    #else
      if (!NextBuf)
      {
        memcpy(&ABuf[txidx * 4], &lSample, 4);
        txidx++;
        memcpy(&ABuf[txidx * 4], &rSample, 4);
        txidx++;
      }
      else
      {
        memcpy(&BBuf[txidx * 4], &lSample, 4);
        txidx++;
        memcpy(&BBuf[txidx * 4], &rSample, 4);
        txidx++;
      }

      if (txidx >= 16)
      {
        NextBuf ^= 1;
        TX_Flag = 1;
        txidx = 0;
      }
    #endif

  #endif
  /* USER CODE END TIM3_IRQn 0 */
  HAL_TIM_IRQHandler(&htim3);
  /* USER CODE BEGIN TIM3_IRQn 1 */

  /* USER CODE END TIM3_IRQn 1 */
}

Link to completed code on GitHub

Result data

The result data folder includes three files.

  1. record_2022_07_19_05-32-45.txt --> the signal data of output of USB CDC, a point data use 4 bytes and the sequence is Left channel, Right channel, Left channel, Right channel...
  2. Logic_R-1kHzSin_L-GND.csv --> the retrieve signal data from the i2s interface via the logic analyzer.
  3. drawout7.m --> the data conversion for the output of USB CDC, transfer the data to value (two's complement and shift one bit)
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
  • In the result, the upper half of the sine wave probably overflows (somewhere near 1.7e7) and as a result is shifted from the range 1.7e7 to 2.0e7 down to 0 to 0.3e7. The result seems to use unsigned numbers, while the input uses signed numbers. The problem is somewhere in code you don't show. – Codo Jul 21 '22 at 19:25
  • Thanks for your response, I'm already supplement the link on GitHub, and the [result data](https://github.com/biopunk101/MSIP2/blob/Develop/V022_2/R-1kHz-0.52V_L-GND_Sin%20wave.zip) – Gypsy Lang Jul 22 '22 at 01:17
  • Most likely the problem is in the code receiving the USB data and converting it. I can't see that code. I also don't understand the contents of the zip file. Which file is what? – Codo Jul 22 '22 at 06:31
  • Thanks for your response again, I've updated the description of the result data. if any questions, please let me know. – Gypsy Lang Jul 22 '22 at 09:29

1 Answers1

0

Refer to the video [#13] FIR Filters - Audio DSP On STM32 (24 Bit / 48 kHz)

It also has source code and is very useful.

Change the process of retrieving value for signals of L/R channel.

void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
    lSample = (int)(rxBuf[0] << 16) | rxBuf[1];
    rSample = (int)(rxBuf[2] << 16) | rxBuf[3];
}

void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
   lSample = (int)(rxBuf[4] << 16) | rxBuf[5];
   rSample = (int)(rxBuf[6] << 16) | rxBuf[7];
}

And collect data via a timer, when reached 64 bytes (best performance for CDC), and transmit it.

And the final result.

1k sine wave

3

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131