Say I have a dataframe
data_dict = {'Number': {0: 1, 1: 2, 2: 3}, 'mw link': {0: 'SAM3703_2SAM3944 2', 1: 'SAM3720_2SAM4115 2', 2: 'SAM3729_2SAM4121_ 2'}, 'site_a': {0: 'SAM3703', 1: 'SAM3720', 2: 'SAM3729'}, 'name_a': {0: 'Chelak', 1: 'KattakurganATC', 2: 'Payariq'}, 'site_b': {0: 'SAM3944', 1: 'SAM4115', 2: 'SAM4121'}, 'name_b': {0: 'Turkibolo', 1: 'Kattagurgon Sement Zavod', 2: 'Payariq Dehgonobod'}, 'distance km': {0: 3.618, 1: 7.507, 2: 9.478}, 'manufacture': {0: 'ZTE NR 8150/8250', 1: 'ZTE NR 8150/8250', 2: 'ZTE NR 8150/8250'}}
df = pd.DataFrame(data_dict)
Expected Output :
There are these two columns site_a
and site_b
which I want to melt into rows but applying a simple melt gives output in series, I want them to be in an alternate fashion.
Number mw link distance km manufacture variable value
0 1 SAM3703_2SAM3944 2 3.618 ZTE NR 8150/8250 site_a SAM3703
1 1 SAM3703_2SAM3944 2 3.618 ZTE NR 8150/8250 site_b SAM3944
2 2 SAM3720_2SAM4115 2 7.507 ZTE NR 8150/8250 site_a SAM3720
3 2 SAM3720_2SAM4115 2 7.507 ZTE NR 8150/8250 site_b SAM4115
4 3 SAM3729_2SAM4121_ 2 9.478 ZTE NR 8150/8250 site_a SAM3729
5 3 SAM3729_2SAM4121_ 2 9.478 ZTE NR 8150/8250 site_b SAM4121
My Solution :
This is what I have tried
df1 = pd.melt(df, id_vars=['Number', 'mw link', 'distance km', 'manufacture'], value_vars=['site_a', 'site_b'])
which gives me :