Say we have a class in cython that wraps (via a pointer) a C++ class with unknown/variable size in memory:
//poly.h
class Poly{
std::vector[int] v
// [...] Methods to initialize/add/multiply/... coefficients [...] e.g.,
Poly(int len, int val){for (int i=0; i<len; i++){this->v.push_back(val)};};
void add(Poly& p) {for (int i=0; i<this->v.size();i++){this->v[i] += p->v[i];};};
};
We can conveniently expose operations like add
in PyPoly
using operator overloads (e.g., __add__
/__iadd__
):
cdef extern from "poly.h":
cdef cppclass Poly:
Poly(int len, int val)
void add(Poly& p)
#pywrapper.pyx
cdef class PyPoly
cdef Poly* c_poly
cdef __cinit__(self, int l, int val):
self.c_poly = new Poly(l, val)
cdef __dealloc__(self):
del self.c_poly
def __add__(self, PyPoly other):
new_poly = PyPoly(self.c_poly.size(), 0)
new_poly.c_poly.add(self.c_poly)
new_poly.c_poly.add(other.c_poly)
return new_poly
How to create an efficient 1D numpy array with this cdef class?
The naive way I'm using so far involves a np.ndarray of type object
, which benefits from the existing operator overloads:
pypoly_arr = np.array([PyPoly(l=10, val) for val in range(10)])
pypoly_sum = np.sum(pypoly_arr) # Works thanks to implemented PyPoly.__add__
However, the above solution has to go through python code to understand the data type and the proper way to deal with __add__
, which becomes quite cumbersome for big array sizes.
Inspired by https://stackoverflow.com/a/45150611/9670056, I tried with an array wrapper of my own, but I'm not sure how to create a vector[PyPoly]
, whether I should do it or instead just hold a vector of borrowed references vector[Poly*]
, so that the call to np.sum
could be treated (and paralellized) at C++ level.
Any help/suggestions will be highly appreciated! (specially to rework the question/examples to make it as generic as possible & runnable)