I'm trying to use the Anderson-Darling test on some data I am pretty sure is normally distributed. I have tried many tests but am running into trouble because lots of the values are zero and many of the non-zero ones are small. When I run the code on my array, I am getting the error: "RuntimeWarning: divide by zero encountered in log S = sum((2 * i-1.0)/ N * (log(z)+log(1-z[::-1])),axis=0)" and the test statistic is showing up as inf. Got any tips?
Edit: here is some code with some sample data
data = np.array([[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00
0.00000000e+00 9.90000010e-01 0.00000000e+00 9.90000010e-01
1.00000000e+00 9.30000007e-01 1.00000000e+00 1.00000000e+00
2.00000000e+00 1.99000001e+00 9.30000007e-01 9.90000010e-01
0.00000000e+00 1.00000000e+00 0.00000000e+00 1.93000001e+00
1.00000000e+00 1.99000001e+00 2.94000000e+00 1.00000000e+00
5.83000004e+00 5.83000004e+00 6.91000003e+00 6.82999998e+00
1.07800000e+01 9.77000004e+00 1.34700000e+01 1.77100000e+01
2.76000001e+01 5.09000002e+01 9.92300003e+01 1.99720001e+02
3.94330001e+02 8.10660002e+02 1.60540001e+03 2.83691001e+03
4.46896001e+03 5.48025002e+03 5.21601002e+03 3.94428001e+03
2.48591001e+03 1.56996000e+03 9.49610003e+02 5.92650002e+02
4.02490001e+02 2.93620001e+02 2.16200001e+02 1.43060001e+02
1.22550000e+02 9.20400003e+01 9.50000004e+01 6.97500002e+01
6.26600003e+01 5.37800002e+01 5.31300001e+01 5.01200002e+01
4.25000002e+01 3.14000001e+01 2.94300001e+01 3.41700001e+01
3.16100001e+01 2.83400001e+01 1.86500001e+01 1.76200001e+01
2.06500001e+01 1.38100001e+01 1.37600001e+01 1.26400000e+01
1.17600001e+01 5.85000002e+00 1.29200000e+01 1.09100000e+01
5.97000003e+00 3.99000001e+00 4.92000002e+00 8.84000003e+00
5.80000001e+00 3.91000003e+00 5.96000004e+00 2.88000000e+00])
print(stats.anderson(data))
as is, this gives a test statistic in the 20s which is ridiculous, but when I use my actual data which has lots of small values like this and then about a 1000 zeros after it, the test statistic is inf and I get the error I pasted above. I can't work out what I'm doing wrong for the test to fail. Any advice would be appreciated.