I am trying to plot the output from predict function in stars
package. But it is throwing error
library(stars)
tif = system.file("tif/L7_ETMs.tif", package = "stars")
i = read_stars(tif, proxy = TRUE) %>%
split()
nclus = 5
sam = st_sample(i, 1000)
k = kmeans(na.omit(as.data.frame(sam)[, -c(1:2)]), nclus)
out = predict(i, k)
plot(out, col = sf.colors(nclus, categorical=TRUE))
prediction on array(s) X1,X2,X3,X4,X5,X6' failed; will try to split() dimension y' over attributes Error in split.stars(object) : length(x) == 1 is not TRUE
sessionInfo()
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
Matrix products: default
locale:
[1] LC_COLLATE=English_India.utf8 LC_CTYPE=English_India.utf8
[3] LC_MONETARY=English_India.utf8 LC_NUMERIC=C
[5] LC_TIME=English_India.utf8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] caret_6.0-92 lattice_0.20-45 ggplot2_3.3.6 MASS_7.3-57
[5] openxlsx_4.2.5 stars_0.5-5 sf_1.0-7 abind_1.4-5
loaded via a namespace (and not attached):
[1] nlme_3.1-157 bitops_1.0-7 bit64_4.0.5
[4] lubridate_1.8.0 doParallel_1.0.17 tools_4.2.1
[7] utf8_1.2.2 R6_2.5.1 rpart_4.1.16
[10] KernSmooth_2.23-20 DBI_1.1.3 colorspace_2.0-3
[13] nnet_7.3-17 withr_2.5.0 gbm_2.1.8
[16] tidyselect_1.1.2 gridExtra_2.3 bit_4.0.4
[19] compiler_4.2.1 cli_3.3.0 scales_1.2.0
[22] classInt_0.4-7 randomForest_4.7-1.1 proxy_0.4-27
[25] plotmo_3.6.2 stringr_1.4.0 digest_0.6.29
[28] rmarkdown_2.14 pkgconfig_2.0.3 htmltools_0.5.2
[31] parallelly_1.32.0 plotrix_3.8-2 fastmap_1.1.0
[34] rlang_1.0.3 rstudioapi_0.13 generics_0.1.3
[37] jsonlite_1.8.0 dplyr_1.0.9 ModelMetrics_1.2.2.2
[40] zip_2.2.0 RCurl_1.98-1.7 magrittr_2.0.3
[43] Formula_1.2-4 Matrix_1.4-1 Rcpp_1.0.8.3
[46] munsell_0.5.0 fansi_1.0.3 lifecycle_1.0.1
[49] terra_1.6-1 stringi_1.7.6 pROC_1.18.0
[52] yaml_2.3.5 plyr_1.8.7 recipes_0.2.0
[55] grid_4.2.1 earth_5.3.1 parallel_4.2.1
[58] listenv_0.8.0 crayon_1.5.1 splines_4.2.1
[61] knitr_1.39 pillar_1.7.0 ranger_0.13.1
[64] xgboost_1.6.0.1 future.apply_1.9.0 reshape2_1.4.4
[67] codetools_0.2-18 stats4_4.2.1 glue_1.6.2
[70] evaluate_0.15 data.table_1.14.2 BiocManager_1.30.18
[73] vctrs_0.4.1 foreach_1.5.2 gtable_0.3.0
[76] purrr_0.3.4 kernlab_0.9-31 future_1.26.1
[79] assertthat_0.2.1 TeachingDemos_2.12 xfun_0.31
[82] gower_1.0.0 prodlim_2019.11.13 h2o_3.36.1.2
[85] lwgeom_0.2-8 e1071_1.7-11 vip_0.3.2
[88] class_7.3-20 survival_3.3-1 timeDate_3043.102
[91] tibble_3.1.7 iterators_1.0.14 fastAdaboost_1.0.0
[94] hardhat_1.2.0 units_0.8-0 lava_1.6.10
[97] globals_0.15.1 ellipsis_0.3.2 ipred_0.9-12