-2

There is no evaluation during training in the Google Colab Notebook for detectron2 as can be seen here: https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5. It does not use the validation data while training a custom dataset. How should I add it?

Reference Github repo - https://github.com/facebookresearch/detectron2

YadneshD
  • 396
  • 2
  • 12

1 Answers1

1

Colab notebooks are usually slow and meant for showing the basic usage of a repo. The fact that it is not evaluating during training could be just as simple as they don't consider it necessary having that step in a simple notebook. The more complex examples with periodic evaluation during training are in their repo.

However if you still want to evaluate in the notebook, I see that they create a train and val split here:

for d in ["train", "val"]:
    DatasetCatalog.register("balloon_" + d, lambda d=d: get_balloon_dicts("balloon/" + d))
    MetadataCatalog.get("balloon_" + d).set(thing_classes=["balloon"])

But is is not evaluating under training because of this line of code

cfg.DATASETS.TEST = ()

Try

cfg.DATASETS.TEST = ("balloon_val",)

instead and then set the hook for the trainer such that it suits your evaluation needs

Results obtained by setting eval_period to 50 and the custom evaluation to COCOEvaluator on balloon_val:


[07/14 07:23:52 d2.engine.train_loop]: Starting training from iteration 0
[07/14 07:24:02 d2.utils.events]:  eta: 0:02:14  iter: 19  total_loss: 2.246  loss_cls: 0.7813  loss_box_reg: 0.6616  loss_mask: 0.683  loss_rpn_cls: 0.03956  loss_rpn_loc: 0.008304  time: 0.4848  data_time: 0.0323  lr: 1.6068e-05  max_mem: 5425M
[07/14 07:24:12 d2.utils.events]:  eta: 0:02:01  iter: 39  total_loss: 1.879  loss_cls: 0.6221  loss_box_reg: 0.5713  loss_mask: 0.615  loss_rpn_cls: 0.04036  loss_rpn_loc: 0.01448  time: 0.4721  data_time: 0.0108  lr: 3.2718e-05  max_mem: 5425M
[07/14 07:24:17 d2.evaluation.evaluator]: Start inference on 13 batches
[07/14 07:24:26 d2.evaluation.evaluator]: Inference done 11/13. Dataloading: 0.0013 s/iter. Inference: 0.1507 s/iter. Eval: 0.1892 s/iter. Total: 0.3412 s/iter. ETA=0:00:00
[07/14 07:24:27 d2.evaluation.evaluator]: Total inference time: 0:00:02.799655 (0.349957 s / iter per device, on 1 devices)
[07/14 07:24:27 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:01 (0.149321 s / iter per device, on 1 devices)
[07/14 07:24:27 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/14 07:24:27 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/14 07:24:27 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:24:27 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[07/14 07:24:27 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:24:27 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:24:27 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.029
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.063
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.044
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.035
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.176
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.444
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.388
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.510
[07/14 07:24:27 d2.evaluation.coco_evaluation]: Evaluation results for bbox: 
|  AP   |  AP50  |  AP75  |  APs  |  APm  |  APl  |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 2.906 | 6.326  | 2.098  | 0.193 | 4.398 | 3.484 |
Loading and preparing results...
DONE (t=0.02s)
creating index...
index created!
[07/14 07:24:27 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm*
[07/14 07:24:27 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.02 seconds.
[07/14 07:24:27 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:24:27 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.040
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.081
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.039
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.049
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.062
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.004
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.214
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.532
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.100
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.465
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.613
[07/14 07:24:27 d2.evaluation.coco_evaluation]: Evaluation results for segm: 
|  AP   |  AP50  |  AP75  |  APs  |  APm  |  APl  |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 4.027 | 8.132  | 3.905  | 0.166 | 4.904 | 6.221 |
[07/14 07:24:32 d2.utils.events]:  eta: 0:01:56  iter: 59  total_loss: 1.621  loss_cls: 0.4834  loss_box_reg: 0.6684  loss_mask: 0.4703  loss_rpn_cls: 0.03119  loss_rpn_loc: 0.006103  time: 0.4799  data_time: 0.0117  lr: 4.9367e-05  max_mem: 5425M
[07/14 07:24:42 d2.utils.events]:  eta: 0:01:47  iter: 79  total_loss: 1.401  loss_cls: 0.3847  loss_box_reg: 0.6159  loss_mask: 0.3641  loss_rpn_cls: 0.03303  loss_rpn_loc: 0.00822  time: 0.4797  data_time: 0.0130  lr: 6.6017e-05  max_mem: 5425M
[07/14 07:24:51 d2.utils.events]:  eta: 0:01:36  iter: 99  total_loss: 1.268  loss_cls: 0.3295  loss_box_reg: 0.6366  loss_mask: 0.2884  loss_rpn_cls: 0.01753  loss_rpn_loc: 0.00765  time: 0.4775  data_time: 0.0096  lr: 8.2668e-05  max_mem: 5425M
[07/14 07:24:51 d2.evaluation.evaluator]: Start inference on 13 batches
[07/14 07:25:01 d2.evaluation.evaluator]: Inference done 11/13. Dataloading: 0.0014 s/iter. Inference: 0.1493 s/iter. Eval: 0.1851 s/iter. Total: 0.3358 s/iter. ETA=0:00:00
[07/14 07:25:01 d2.evaluation.evaluator]: Total inference time: 0:00:02.778349 (0.347294 s / iter per device, on 1 devices)
[07/14 07:25:01 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:01 (0.148906 s / iter per device, on 1 devices)
[07/14 07:25:02 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/14 07:25:02 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/14 07:25:02 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:25:02 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[07/14 07:25:02 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:25:02 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:25:02 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.01 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.543
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.751
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.626
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.092
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.472
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.636
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.196
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.620
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.714
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.533
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.588
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
[07/14 07:25:02 d2.evaluation.coco_evaluation]: Evaluation results for bbox: 
|   AP   |  AP50  |  AP75  |  APs  |  APm   |  APl   |
|:------:|:------:|:------:|:-----:|:------:|:------:|
| 54.340 | 75.066 | 62.622 | 9.181 | 47.208 | 63.594 |
Loading and preparing results...
DONE (t=0.02s)
creating index...
index created!
[07/14 07:25:02 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm*
[07/14 07:25:02 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.02 seconds.
[07/14 07:25:02 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:25:02 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.01 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.630
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.754
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.741
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.060
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.519
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.750
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.214
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.692
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.786
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.533
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.641
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.893
[07/14 07:25:02 d2.evaluation.coco_evaluation]: Evaluation results for segm: 
|   AP   |  AP50  |  AP75  |  APs  |  APm   |  APl   |
|:------:|:------:|:------:|:-----:|:------:|:------:|
| 62.959 | 75.390 | 74.088 | 5.987 | 51.899 | 74.988 |
[07/14 07:25:11 d2.utils.events]:  eta: 0:01:26  iter: 119  total_loss: 1.158  loss_cls: 0.2745  loss_box_reg: 0.6951  loss_mask: 0.2165  loss_rpn_cls: 0.02461  loss_rpn_loc: 0.00421  time: 0.4773  data_time: 0.0101  lr: 9.9318e-05  max_mem: 5425M
[07/14 07:25:21 d2.utils.events]:  eta: 0:01:16  iter: 139  total_loss: 1.015  loss_cls: 0.1891  loss_box_reg: 0.6029  loss_mask: 0.1745  loss_rpn_cls: 0.02219  loss_rpn_loc: 0.005621  time: 0.4766  data_time: 0.0111  lr: 0.00011597  max_mem: 5425M
[07/14 07:25:26 d2.evaluation.evaluator]: Start inference on 13 batches
[07/14 07:25:34 d2.evaluation.evaluator]: Inference done 11/13. Dataloading: 0.0013 s/iter. Inference: 0.1459 s/iter. Eval: 0.1786 s/iter. Total: 0.3258 s/iter. ETA=0:00:00
[07/14 07:25:35 d2.evaluation.evaluator]: Total inference time: 0:00:02.608437 (0.326055 s / iter per device, on 1 devices)
[07/14 07:25:35 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:01 (0.143658 s / iter per device, on 1 devices)
[07/14 07:25:35 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/14 07:25:35 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/14 07:25:35 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:25:35 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[07/14 07:25:35 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:25:35 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:25:35 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.663
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.843
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.754
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.245
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.562
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.790
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.228
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.712
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.758
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.567
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.647
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.840
[07/14 07:25:35 d2.evaluation.coco_evaluation]: Evaluation results for bbox: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 66.307 | 84.257 | 75.431 | 24.466 | 56.175 | 79.035 |
Loading and preparing results...
DONE (t=0.01s)
creating index...
index created!
[07/14 07:25:35 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm*
[07/14 07:25:35 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.02 seconds.
[07/14 07:25:35 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:25:35 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.756
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.839
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.833
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.135
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.581
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.915
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.248
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.788
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.836
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.600
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.676
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.950
[07/14 07:25:35 d2.evaluation.coco_evaluation]: Evaluation results for segm: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 75.579 | 83.916 | 83.342 | 13.466 | 58.113 | 91.479 |
[07/14 07:25:40 d2.utils.events]:  eta: 0:01:07  iter: 159  total_loss: 0.845  loss_cls: 0.1613  loss_box_reg: 0.5442  loss_mask: 0.1211  loss_rpn_cls: 0.01358  loss_rpn_loc: 0.006381  time: 0.4768  data_time: 0.0110  lr: 0.00013262  max_mem: 5425M
[07/14 07:25:49 d2.utils.events]:  eta: 0:00:58  iter: 179  total_loss: 0.7381  loss_cls: 0.1207  loss_box_reg: 0.4569  loss_mask: 0.1153  loss_rpn_cls: 0.01103  loss_rpn_loc: 0.005893  time: 0.4782  data_time: 0.0098  lr: 0.00014927  max_mem: 5425M
[07/14 07:25:59 d2.utils.events]:  eta: 0:00:48  iter: 199  total_loss: 0.5811  loss_cls: 0.108  loss_box_reg: 0.3294  loss_mask: 0.09868  loss_rpn_cls: 0.01414  loss_rpn_loc: 0.008676  time: 0.4783  data_time: 0.0101  lr: 0.00016592  max_mem: 5425M
[07/14 07:25:59 d2.evaluation.evaluator]: Start inference on 13 batches
[07/14 07:26:05 d2.evaluation.evaluator]: Inference done 11/13. Dataloading: 0.0017 s/iter. Inference: 0.1317 s/iter. Eval: 0.0985 s/iter. Total: 0.2319 s/iter. ETA=0:00:00
[07/14 07:26:05 d2.evaluation.evaluator]: Total inference time: 0:00:01.788219 (0.223527 s / iter per device, on 1 devices)
[07/14 07:26:05 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:01 (0.127455 s / iter per device, on 1 devices)
[07/14 07:26:05 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/14 07:26:05 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/14 07:26:05 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:26:05 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[07/14 07:26:05 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:26:05 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:26:05 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.01 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.728
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.894
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.858
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.303
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.571
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.848
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.218
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.742
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.790
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.688
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.877
[07/14 07:26:05 d2.evaluation.coco_evaluation]: Evaluation results for bbox: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 72.797 | 89.384 | 85.752 | 30.301 | 57.057 | 84.812 |
Loading and preparing results...
DONE (t=0.01s)
creating index...
index created!
[07/14 07:26:05 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm*
[07/14 07:26:05 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:26:05 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:26:05 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.805
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.885
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.880
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.252
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.617
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.950
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.250
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.860
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.567
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.960
[07/14 07:26:05 d2.evaluation.coco_evaluation]: Evaluation results for segm: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 80.490 | 88.547 | 87.953 | 25.206 | 61.723 | 94.959 |
[07/14 07:26:15 d2.utils.events]:  eta: 0:00:38  iter: 219  total_loss: 0.4771  loss_cls: 0.08176  loss_box_reg: 0.2226  loss_mask: 0.09229  loss_rpn_cls: 0.01647  loss_rpn_loc: 0.009867  time: 0.4789  data_time: 0.0132  lr: 0.00018257  max_mem: 5425M
[07/14 07:26:25 d2.utils.events]:  eta: 0:00:28  iter: 239  total_loss: 0.366  loss_cls: 0.07189  loss_box_reg: 0.1961  loss_mask: 0.08049  loss_rpn_cls: 0.01413  loss_rpn_loc: 0.006811  time: 0.4785  data_time: 0.0122  lr: 0.00019922  max_mem: 5425M
[07/14 07:26:29 d2.evaluation.evaluator]: Start inference on 13 batches
[07/14 07:26:34 d2.evaluation.evaluator]: Inference done 11/13. Dataloading: 0.0015 s/iter. Inference: 0.1195 s/iter. Eval: 0.0502 s/iter. Total: 0.1711 s/iter. ETA=0:00:00
[07/14 07:26:34 d2.evaluation.evaluator]: Total inference time: 0:00:01.375643 (0.171955 s / iter per device, on 1 devices)
[07/14 07:26:34 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:00 (0.117491 s / iter per device, on 1 devices)
[07/14 07:26:34 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/14 07:26:34 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/14 07:26:34 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:26:34 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[07/14 07:26:34 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:26:34 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:26:34 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.779
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.916
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.878
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.350
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.615
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.896
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.234
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.800
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.826
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.467
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.718
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.923
[07/14 07:26:34 d2.evaluation.coco_evaluation]: Evaluation results for bbox: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 77.888 | 91.606 | 87.774 | 34.965 | 61.497 | 89.576 |
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:26:34 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm*
[07/14 07:26:34 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:26:34 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:26:34 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.823
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.894
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.891
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.248
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.624
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.967
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.254
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.832
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.858
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.367
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.741
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.973
[07/14 07:26:34 d2.evaluation.coco_evaluation]: Evaluation results for segm: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 82.323 | 89.379 | 89.068 | 24.752 | 62.427 | 96.691 |
[07/14 07:26:39 d2.utils.events]:  eta: 0:00:19  iter: 259  total_loss: 0.2651  loss_cls: 0.05436  loss_box_reg: 0.1442  loss_mask: 0.06249  loss_rpn_cls: 0.005261  loss_rpn_loc: 0.00489  time: 0.4781  data_time: 0.0123  lr: 0.00021587  max_mem: 5425M
[07/14 07:26:49 d2.utils.events]:  eta: 0:00:09  iter: 279  total_loss: 0.4224  loss_cls: 0.07591  loss_box_reg: 0.1941  loss_mask: 0.09489  loss_rpn_cls: 0.009817  loss_rpn_loc: 0.008633  time: 0.4777  data_time: 0.0109  lr: 0.00023252  max_mem: 5425M
[07/14 07:26:59 d2.utils.events]:  eta: 0:00:00  iter: 299  total_loss: 0.3534  loss_cls: 0.07829  loss_box_reg: 0.1646  loss_mask: 0.08058  loss_rpn_cls: 0.01157  loss_rpn_loc: 0.006635  time: 0.4779  data_time: 0.0120  lr: 0.00024917  max_mem: 5425M
[07/14 07:27:00 d2.engine.hooks]: Overall training speed: 298 iterations in 0:02:22 (0.4779 s / it)
[07/14 07:27:00 d2.engine.hooks]: Total training time: 0:03:06 (0:00:43 on hooks)
[07/14 07:27:00 d2.evaluation.evaluator]: Start inference on 13 batches
[07/14 07:27:04 d2.evaluation.evaluator]: Inference done 11/13. Dataloading: 0.0015 s/iter. Inference: 0.1155 s/iter. Eval: 0.0340 s/iter. Total: 0.1510 s/iter. ETA=0:00:00
[07/14 07:27:04 d2.evaluation.evaluator]: Total inference time: 0:00:01.238510 (0.154814 s / iter per device, on 1 devices)
[07/14 07:27:04 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:00 (0.114618 s / iter per device, on 1 devices)
[07/14 07:27:04 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/14 07:27:04 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/14 07:27:04 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:27:04 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[07/14 07:27:04 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:27:04 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:27:04 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.762
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.927
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.859
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.310
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.640
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.864
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.236
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.788
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.814
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.433
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.724
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.903
[07/14 07:27:04 d2.evaluation.coco_evaluation]: Evaluation results for bbox: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 76.245 | 92.732 | 85.874 | 31.015 | 63.981 | 86.418 |
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[07/14 07:27:04 d2.evaluation.fast_eval_api]: Evaluate annotation type *segm*
[07/14 07:27:04 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.01 seconds.
[07/14 07:27:04 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[07/14 07:27:04 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.00 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.818
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.902
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.899
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.253
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.632
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.956
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.252
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.828
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.856
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.400
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.970
[07/14 07:27:04 d2.evaluation.coco_evaluation]: Evaluation results for segm: 
|   AP   |  AP50  |  AP75  |  APs   |  APm   |  APl   |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 81.780 | 90.213 | 89.900 | 25.284 | 63.179 | 95.585 |
Mike B
  • 2,136
  • 2
  • 12
  • 31
  • Added my results to my answer based on my hook configuration. With eval_period set to 50 and my custom COCO evaluation on balloon_val – Mike B Jul 14 '22 at 08:00