I saw this post that trained a LGBM model but i would like to know how to adapt it for Lasso. I know the prediction may not necessarily be between 0 and 1, but I would like to try this model. I have tried this but it doesnt work:
import numpy as np
from lightgbm import LGBMClassifier
from sklearn.datasets import make_classification
from sklearn.linear_model import Lasso
X, y = make_classification(n_features=10, random_state=0, n_classes=2, n_samples=1000, n_informative=8)
class Lasso(Lasso):
def predict(self,X, threshold=0.5):
result = super(Lasso, self).predict_proba(X)
predictions = [1 if p>threshold else 0 for p in result[:,0]]
return predictions
clf = Lasso(alpha=0.05)
clf.fit(X,y)
precision = cross_val_score(Lasso(),X,y,cv=5,scoring='precision')
I get
UserWarning: Scoring failed. The score on this train-test partition for these parameters will be set to nan