You can scrape the site (without inspecting the javascript/json) using Selenium, using bs4 from my previous answer but you can use seleniums functions instead.
from selenium import webdriver
from bs4 import BeautifulSoup as bs
# Initiate webdriver
driver = webdriver.Firefox()
# Fetch the web page
driver.get('https://www.reuters.com/markets/companies/TSLA.OQ/key-metrics/price-and-volume')
# Convert the driver page source to a soup object
soup = bs(driver.page_source, 'html.parser')
# Find the table you want to scrape
table = soup.find('table', attrs={'aria-label':'KeyMetrics'})
# Locate the Keys and Value for each of the rows
keys = [i.text for i in table.select('tbody tr th') if i]
values = [i.text for i in table.select('tbody tr td') if i]
# Convert the two lists into a dictionary for a neater output
data = dict(zip(keys,values))
driver.quit()
print(data)
This will return:
{'Price Closing Or Last Bid': '699.20', 'Pricing Date': 'Jul 05', '52 Week High': '1,243.25', '52 Week High Date': 'Nov 04', '52 Week Low': '620.50', '52 Week Low Date': 'Jul 08', '10 Day Average Trading Volume': '31.36', '3 Month Average Trading Volume': '602.72', 'Market Capitalization': '724,644.30', 'Beta': '2.13', '1 Day Price Change': '2.55', '5 Day Price Return (Daily)': '-4.84', '13 Week Price Return (Daily)': '-35.93', '26 Week Price Return (Daily)': '-39.18', '52 Week Price Return (Daily)': '2.99', 'Month To Date Price Return (Daily)': '3.83', 'Year To Date Price Return (Daily)': '-33.84', 'Price Relative To S&P500 (4 Week)': '5.95', 'Price Relative To S&P500 (13 Week)': '-24.33', 'Price Relative To S&P500 (26 Week)': '-23.90', 'Price Relative To S&P500 (52 Week)': '16.99', 'Price Relative To S&P500 (YTD)': '-17.69'}