I have a dataset like:
cid_int item_id score
1 678 0.5
2 787 0.6
3 908 0.1
. . .
. . .
Now I'm running ALS model on this pyspark dataframe for getting recommendation using Collaborative Filtering.
als = ALS(userCol= "cid_int", itemCol= "item_id", ratingCol= "score", rank=5, maxIter=10, seed=0)
model = als.fit(X_train)
Now I have question that what does output of model.userFactors
returns, does it return item embeddings like for m items I'll get all the embeddings?
And if yes can I use KNN
on these embedding to find the closest items to given item?