%GF(2^8)
m=8
mat1 = gf([160 28 233 185 176],8);
result1 = gf([160 28 233 185 176],8)/gf([160],8)
% 1 77 174 32 220
[R,jb] = rref([1 77 174 32 220;189 244 80 245 190])
I use the result from result1 as 1st row and progressively add the next row vector [189 244 80 245 190]
% reduced row echelon
mat2 = [1 77 174 32 220;189 244 80 245 190]
a = gf([1 77 174 32 220;189 244 80 245 190],8);
r2 = a(2,:); r1 = gf(189,8) * a(1,:);
subt = r2 -r1; a(2,:)= subt./gf(122,8);
a(1,:) = a(1,:)- (gf(77,8) *a(2,:));
disp(a)
mat3 = [[1 0 101 105 110]; [0 1 163 128 97]; [157 233 247 64 118]];
m3 = gf(mat3,8);
m3(3,:)= m3(3,:) - (gf(157,8) * m3(1,:))
m3(3,:)= m3(3,:) - (gf(233,8) * m3(2,:))
m3(3,:)= m3(3,:)./ gf(29,8) .
rref
works without GF(2^8). But I am unable to perform the reduction using GF(2^8) . Can someone help me to find a solution and how to proceed?
I will be using the result from the above and append another row-vector to the it. Is there any function we can solve it, instead of going step-by-step