Let´s say I´ve the given dataframe:
import pandas as pd
import numpy as np
# Create the dataframe:
data = {'date' : ['2022-01-01', '2022-01-02', '2022-01-02', '2022-01-03', '2022-01-03', '2022-01-03', '2022-01-03', '2022-01-03', '2022-01-04'],
'ticker' : ['TSLA','TSLA', 'TSLA', 'TSLA', 'TSLA', 'TSLA', 'TSLA', 'AAPL', 'AAPL'],
'type' : ['buy', 'buy', 'split', 'sell', 'buy', 'sell', 'buy', 'buy', 'buy'],
'units' : [2, 2, 3, 2, 2, 2, 2, 2.5, 4],
'price' : [50.5, 50.5, 0, 52, 35, 52, 35, 50.5, 50.5],
'fees' : [4, 4, 0, 2.5, 3, 2.5, 3, 1.5, 2],
}
df = pd.DataFrame(data)
df
Out[3]:
date ticker type units price fees
0 2022-01-01 TSLA buy 2.0 50.5 4.0
1 2022-01-02 TSLA buy 2.0 50.5 4.0
2 2022-01-02 TSLA split 3.0 0.0 0.0
3 2022-01-03 TSLA sell 2.0 52.0 2.5
4 2022-01-03 TSLA buy 2.0 35.0 3.0
5 2022-01-03 TSLA sell 2.0 52.0 2.5
6 2022-01-03 TSLA buy 2.0 35.0 3.0
7 2022-01-03 AAPL buy 2.5 50.5 1.5
8 2022-01-04 AAPL buy 4.0 50.5 2.0
Whereas I calculate the following columns:
# Create the column transaction value
def calc_transaction_value(type_transaction, price_unit, transacted_units, fees):
"""
Calculate the transaction value from three columns in a dataframe depending on the value of type.
"""
if type_transaction == 'buy':
return price_unit * transacted_units + fees # i.e. the transacted cost
if type_transaction == 'sell':
return price_unit * transacted_units - fees # i.e. the gross income of capital
else:
return np.nan # If other return filler (i.e return NaN)
df['transacted_value'] = df.apply(lambda x: calc_transaction_value(x['type'], x['price'], x['units'], x['fees']), axis=1).fillna(0)
df
Out[4]:
date ticker type units price fees transacted_value
0 2022-01-01 TSLA buy 2.0 50.5 4.0 105.00
1 2022-01-02 TSLA buy 2.0 50.5 4.0 105.00
2 2022-01-02 TSLA split 3.0 0.0 0.0 0.00
3 2022-01-03 TSLA sell 2.0 52.0 2.5 101.50
4 2022-01-03 TSLA buy 2.0 35.0 3.0 73.00
5 2022-01-03 TSLA sell 2.0 52.0 2.5 101.50
6 2022-01-03 TSLA buy 2.0 35.0 3.0 73.00
7 2022-01-03 AAPL buy 2.5 50.5 1.5 127.75
8 2022-01-04 AAPL buy 4.0 50.5 2.0 204.00
And:
# create the flow of units, depends on transaction type (buy or sell)
df["flow_units"] = df.apply(lambda x: -x["units"] if x["type"] == "sell" else x["units"], axis=1)
# Create the cml_units and prev_units column
df = df.groupby("ticker").apply(lambda grp: grp.assign(cml_units=grp["flow_units"].cumsum().abs(),
prev_units=grp["flow_units"].shift(1).cumsum().abs().fillna(0)))
df
Out[5]:
date ticker type units price fees transacted_value flow_units \
0 2022-01-01 TSLA buy 2.0 50.5 4.0 105.00 2.0
1 2022-01-02 TSLA buy 2.0 50.5 4.0 105.00 2.0
2 2022-01-02 TSLA split 3.0 0.0 0.0 0.00 3.0
3 2022-01-03 TSLA sell 2.0 52.0 2.5 101.50 -2.0
4 2022-01-03 TSLA buy 2.0 35.0 3.0 73.00 2.0
5 2022-01-03 TSLA sell 2.0 52.0 2.5 101.50 -2.0
6 2022-01-03 TSLA buy 2.0 35.0 3.0 73.00 2.0
7 2022-01-03 AAPL buy 2.5 50.5 1.5 127.75 2.5
8 2022-01-04 AAPL buy 4.0 50.5 2.0 204.00 4.0
cml_units prev_units
0 2.0 0.0
1 4.0 2.0
2 7.0 4.0
3 5.0 7.0
4 7.0 5.0
5 5.0 7.0
6 7.0 5.0
7 2.5 0.0
8 6.5 2.5
Where the computation of columns for cml_units
and prev_units
is inspired by @krassowski in thread.
But here I would like to create the columns prev_costs
, cml_costs
and cost_transaction
. The logic is as follows:
I want to for each row, get the ticker from column ticker
, and:
- if transaction type value is equal to
buy
in columntype
then compute the operationprev_costs + transacted_value
and populate in columncml_costs
.- Where
prev_costs
for that row iscml_costs
but shifted one row up (if grouped by ticker).
- Where
- if transaction type value is equal to
sell
then compute the operationprev_costs - cost_transaction
and populate incml_costs
.- Where
prev_costs
for that row iscml_costs
but shifted one row up (if grouped by ticker). - And where
cost_transaction
is the result of operation (for that row):(units/cml_units) * prev_costs
- Where
- else return
prev_costs
and populate incml_costs
.
I expect the resulting dataframe as:
data_2 = {'prev_costs' : [0, 105, 210, 210, 150, 223, 159.29, 0, 127.75],
'cml_costs' : [105, 210, 210, 150, 223, 159.29, 232.29, 127.75, 331.75],
'cost_transaction' : [0, 0, 0, 60, 0, 63.71, 0, 0, 0],
}
df2 = pd.DataFrame(data_2)
df_expected = pd.concat([df, df2], axis=1, join='inner')
df_expected
Out[6]:
date ticker type units price fees transacted_value flow_units \
0 2022-01-01 TSLA buy 2.0 50.5 4.0 105.00 2.0
1 2022-01-02 TSLA buy 2.0 50.5 4.0 105.00 2.0
2 2022-01-02 TSLA split 3.0 0.0 0.0 0.00 3.0
3 2022-01-03 TSLA sell 2.0 52.0 2.5 101.50 -2.0
4 2022-01-03 TSLA buy 2.0 35.0 3.0 73.00 2.0
5 2022-01-03 TSLA sell 2.0 52.0 2.5 101.50 -2.0
6 2022-01-03 TSLA buy 2.0 35.0 3.0 73.00 2.0
7 2022-01-03 AAPL buy 2.5 50.5 1.5 127.75 2.5
8 2022-01-04 AAPL buy 4.0 50.5 2.0 204.00 4.0
cml_units prev_units prev_costs cml_costs cost_transaction
0 2.0 0.0 0.00 105.00 0.00
1 4.0 2.0 105.00 210.00 0.00
2 7.0 4.0 210.00 210.00 0.00
3 5.0 7.0 210.00 150.00 60.00
4 7.0 5.0 150.00 223.00 0.00
5 5.0 7.0 223.00 159.29 63.71
6 7.0 5.0 159.29 232.29 0.00
7 2.5 0.0 0.00 127.75 0.00
8 6.5 2.5 127.75 331.75 0.00
I have made this work in google sheets, but can´t make this work in pandas and in desperate need for help. :)
Thanks in advance!