This is my first post on Stack Overflow, and I'm hoping that it'll be a good one.
This is a problem that I thought up myself, and now I'm a bit embarrassed to say, but it's beating the living daylights out of me. Please note that this is not a homework exercise, scout's honor.
Basically, the program takes (as input) a string made up of integers from 0 to 9.
strInput = '2415043'
Then you need to break up that string of numbers into smaller groups of numbers, until eventually, the sum of those groups give you a pre-defined total. In the case of the above string, the target is 289.
iTarget = 289
For this example, there are two correct answers (but most likely only one will be displayed, since the program stops once the target has been reached):
Answer 1 = 241, 5, 043 (241 + 5 + 043 = 289)
Answer 2 = 241, 5, 0, 43 (241 + 5 + 0 + 43 = 289)
Note that the integers do not change position. They are still in the same order that they were in the original string.
Now, I know how to solve this problem using recursion. But the frustrating part is that I'm NOT ALLOWED to use recursion.
This needs to be solved using only 'while' and 'for' loops. And obviously lists and functions are okay as well.
Below is some of the code that I have so far:
My Code:
#Pre-defined input values, for the sake of simplicity
lstInput = ['2','4','1','5','0','4','3'] #This is the kind of list the user will input
sJoinedList = "".join(lstInput) #sJoinedList = '2415043'
lstWorkingList = [] #All further calculuations are performed on lstWorkingList
lstWorkingList.append(sJoinedList) #lstWorkingList = ['2415043']
iTarget = 289 #Target is pre-defined
-
def SumAll(_lst): #Adds up all the elements in a list
iAnswer = 0 #E.g. lstEg = [2,41,82]
for r in _lst: # SumAll(lstEg) = 125
iAnswer += int(r)
return(iAnswer)
-
def AddComma(_lst):
#Adds 1 more comma to a list and resets all commas to start of list
#E.g. lstEg = [5,1001,300] (Note only 3 groups / 2 commas)
# AddComma(lstEg)
# [5,1,0,001300] (Now 4 groups / 3 commas)
iNoOfCommas = len(_lst) - 1 #Current number of commas in list
sResetString = "".join(_lst) #Make a string with all the elements in the list
lstTemporaryList = []
sTemp = ""
i = 0
while i < iNoOfCommas +1:
sTemp += sResetString[i]+',' #Add a comma after every element
i += 1
sTemp += sResetString[i:]
lstTemporaryList = sTemp.split(',') #Split sTemp into a list, using ',' as a separator
#Returns list in format ['2', '415043'] or ['2', '4', '15043']
return(lstTemporaryList)
return(iAnswer)
So basically, the Pseudo-code will look something like this:
Pseudo-Code:
while SumAll(lstWorkingList) != iTarget: #While Sum != 289
if(len(lstWorkingList[0]) == iMaxLength): #If max possible length of first element is reached
AddComma(lstWorkingList) #then add a new comma / group and
Reset(lstWorkingList) #reset all the commas to the beginning of the list to start again
else:
ShiftGroups() #Keep shifting the comma's until all possible combinations
#for this number of comma's have been tried
#Otherwise, Add another comma and repeat the whole process
Phew! That was quite a mouthfull .
I have worked through the process that the program will follow on a piece of paper, so below is the expected output:
OUTPUT:
[2415043] #Element 0 has reached maximum size, so add another group
#AddComma()
#Reset()
[2, 415043] #ShiftGroups()
[24, 15043] #ShiftGroups()
[241, 5043] #ShiftGroups()
#...etc...etc...
[241504, 3] #Element 0 has reached maximum size, so add another group
#AddComma()
#Reset()
[2, 4, 15043] #ShiftGroups()
[2, 41, 5043] #ShiftGroups()
#etc...etc...
[2, 41504, 3] #Tricky part
Now here is the tricky part. In the next step, the first element must become 24, and the other two must reset.
#Increase Element 0
#All other elements Reset()
[24, 1, 5043] #ShiftGroups()
[24, 15, 043] #ShiftGroups()
#...etc...etc
[24, 1504, 3]
#Increase Element 0
#All other elements Reset()
[241, 5, 043] #BINGO!!!!
Okay. That is the basic flow of the program logic. Now the only thing I need to figure out, is how to get it to work without recursion.
For those of you that have been reading up to this point, I sincerely thank you and hope that you still have the energy left to help me solve this problem. If anything is unclear, please ask and I'll clarify (probably in excruciating detail X-D).
Thanks again!
Edit: 1 Sept 2011
Thank you everyone for responding and for your answers. They are all very good, and definitely more elegant than the route I was following. However, my students have never worked with 'import' or any data-structures more advanced than lists. They do, however, know quite a few list functions. I should also point out that the students are quite gifted mathematically, many of them have competed and placed in international math olympiads. So this assignment is not beyond the scope of their intelligence, perhaps only beyond the scope of their python knowledge.
Last night I had a Eureka! moment. I have not implemented it yet, but will do so over the course of the weekend and then post my results here. It may be somewhat crude, but I think it will get the job done.
Sorry it took me this long to respond, my internet cap was reached and I had to wait until the 1st for it to reset. Which reminds me, happy Spring everyone (for those of you in the Southern Hempisphere).
Thanks again for your contributions. I will choose the top answer after the weekend. Regards!