def build_model(hp):
model = keras.Sequential()
for i in range(hp.Int('input_shape', 2, 20)):
model.add(layers.Dense(units=hp.Int('units_' + str(i),
min_value=32,
max_value=512,
step=32),
activation='relu'))
model.add(layers.Dense(2, activation='sigmoid'))
model.compile(
optimizer=keras.optimizers.Adam(
hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss='binary_crossentropy',
metrics=['accuracy'])
return model
tuner.search(X_train, y_train,
epochs=5,
validation_data=(X_test, y_test))
ValueError: in user code:
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1051, in train_function *
return step_function(self, iterator)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1040, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1030, in run_step **
outputs = model.train_step(data)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 890, in train_step
loss = self.compute_loss(x, y, y_pred, sample_weight)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/training.py", line 948, in compute_loss
return self.compiled_loss(
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/engine/compile_utils.py", line 201, in __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/losses.py", line 139, in __call__
losses = call_fn(y_true, y_pred)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/losses.py", line 243, in call **
return ag_fn(y_true, y_pred, **self._fn_kwargs)
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/losses.py", line 1930, in binary_crossentropy
backend.binary_crossentropy(y_true, y_pred, from_logits=from_logits),
File "/home/user/miniconda3/lib/python3.9/site-packages/keras/backend.py", line 5283, in binary_crossentropy
return tf.nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
ValueError: `logits` and `labels` must have the same shape, received ((None, 2) vs (None, 1)).
Please help me solve the above error. Which is : ValueError: logits
and labels
must have the same shape, received ((None, 2) vs (None, 1)). I am doing Binary Classification here.