I'm new to OpenCL and I'm working on converting an existing algorithm to OpenCL. In this process, I am experiencing a phenomenon that I cannot solve on my own, and I would like to ask some help.
Here's details.
My kernel is applied to images of different size (to be precise, each layer of the Laplacian pyramid).
I get normal results for images of larger size such as 3072 x 3072, 1536 x 1536. But I get abnormal results for smaller images such as 12 x 12, 6 x 6, 3 x 3, 2 x 2.
At first, I suspected that clEnqueueNDRangeKernel had a bottom limit for dimensions, causing this problem. So, I added printf to the beginning of the kernel as follows. It is confirmed that all necessary kernel instances are executed.
__kernel void GetValueOfB(/* parameters */)
{
uint xB = get_global_id(0);
uint yB = get_global_id(1);
printf("(%d, %d)\n", xB, yB);
// calculation code is omitted
}
So after wandering for a while, I added the same printf to the end of the kernel. When I did this, it was confirmed that printf works only for some pixel positions. For pixel positions not output by printf, the calculated values in the resulting image are incorrect, and as a result, I concluded that some kernel instances terminate abnormally before completing the calculations.
__kernel void GetValueOfB(/* parameters */)
{
uint xB = get_global_id(0);
uint yB = get_global_id(1);
printf("(%d, %d)\n", xB, yB);
// calculation code is omitted
printf("(%d, %d, %f)\n", xB, yB, result_for_this_position);
}
It seems that there is no problem with the calculation of the kernel. If I compile the kernel turning off the optimization with the -cl-opt-disable option, I get perfectly correct results for all images regardless of their size. In addition to that, with NVIDA P4000, it works correct. Of course, in theses cases, I confirmed that the printf added at the bottom of the Kernel works for all pixels.
Below I put additional information and attach a part of the code I wrote.
Any advice is welcomed and appreciated. Thank you.
SDK: Intel® SDK For OpenCL™ Applications 2020.3.494
Platform: Intel(R) OpenCL HD Graphics
for all images
{
...
const size_t globalSize[2] = { size_t(vtMatB_GPU_LLP[nLayerIndex].cols), size_t(vtMatB_GPU_LLP[nLayerIndex].rows) };
err = clEnqueueNDRangeKernel(_pOpenCLManager->GetCommandQueue(), kernel, 2,
NULL, globalSize, NULL, 0, NULL, NULL);
if (CL_SUCCESS != err)
return -1;
// I tried with this but it didn't make any difference
//std::this_thread::sleep_for(std::chrono::seconds(1));
err = clFinish(_pOpenCLManager->GetCommandQueue());
if (CL_SUCCESS != err)
return -1;
err = clEnqueueReadBuffer(_pOpenCLManager->GetCommandQueue(), memMatB, CL_TRUE,
0, sizeof(float) * vtMatB_GPU_LLP[nLayerIndex].cols *
vtMatB_GPU_LLP[nLayerIndex].rows, vtMatB_GPU_LLP[nLayerIndex].data, 0, nullptr, nullptr);
if (CL_SUCCESS != err)
return -1;
...
}
And I tried with event, too, but it works the same way.
for all images
{
...
const size_t globalSize[2] = { size_t(vtMatB_GPU_LLP[nLayerIndex].cols), size_t(vtMatB_GPU_LLP[nLayerIndex].rows) };
cl_event event;
err = clEnqueueNDRangeKernel(_pOpenCLManager->GetCommandQueue(), kernel, 2, NULL, globalSize, NULL, 0, NULL, &event);
if (CL_SUCCESS != err)
return -1;
err = clWaitForEvents(1, &event);
if (CL_SUCCESS != err)
return -1;
err = clFinish(_pOpenCLManager->GetCommandQueue());
if (CL_SUCCESS != err)
return -1;
err = clEnqueueReadBuffer(_pOpenCLManager->GetCommandQueue(), memMatB, CL_TRUE,
0, sizeof(float) * vtMatB_GPU_LLP[nLayerIndex].cols *
vtMatB_GPU_LLP[nLayerIndex].rows, vtMatB_GPU_LLP[nLayerIndex].data, 0, nullptr, nullptr);
if (CL_SUCCESS != err)
return -1;
...
}
/////// Added contents ////////////////////////////////////////////
Would you guys please take look at this issue in the aspect of clFinsh, or clWaitEvent. Am I missing something in this regard?
Sometimes I get less correct values and sometimes I get more correct values.
To be more specific, let's say I'm applying the kernel to 12 x 12 size image. So there're 144 pixel values.
Sometime I get correct values for 56 pixels. Sometime I get correct values for 89 pixels. Some other time I get correct value for n(less then 144) pixels.
If I turn off the OpenCL optimization when compiling the kernel by specifying -cl-opt-disable option, I get correct values for all 144 pixels.
The other thing that makes me think the calculation code is correct is that the same OpenCL code with no modification(other then device select code) runs perfectly correctly with NVIDIA P4000.
At first, I was really suspicious about the calculation code, but more I inspect code, more I'm confident there's nothing wrong with calculation code.
I know there's still a chance that there is an error in the calculation code so that there happen some exceptions anywhere during calculations.
I have plain C++ code for same task. I'm comparing results from those two.
/////// Another added contents ////////////////////////////////////////////
I made a minimum code(except projects template) to reproduce the phenomenon.
What's odd more is that if I install "Intel® Distribution for GDB Target" I get correct results.