I'm trying to make a binary Classification by combining CNN (con1D) with GRU. my dataset dataset is like that :
X_train shape : (223461, 5)
y_train shape :(223461,)
the X_train is like that and the Y_train is a labels (0,1) like that
first I convert that train dataset :
dataset = X_train.values
dataset=dataset[1:]
dataset = dataset.astype('float32')
dataset
the same for y-train:
dataset_target = y_train.values
dataset_target=dataset_target[1:]
dataset_target = dataset_target.astype('float32')
dataset_target
now the shapes are dataset.shape =(223460, 5) , dataset_target.shape = (223460,)
than my model structure is :
verbose, epochs, batch_size = 0, 100, 64
n_timesteps, n_features, n_outputs = dataset.shape[0], dataset.shape[1], dataset_target.shape[0]
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape= (n_timesteps,n_features)))
model.add(MaxPooling1D(pool_size=2))
model.add(GRU(64))
model.add(Dropout(0.4))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(1, activation='sigmoid'))
opt = Adam(learning_rate=0.01)
model.compile(loss=tf.keras.losses.BinaryCrossentropy(), optimizer=opt , metrics=['accuracy'])
model.summary()
and when I want to fit dataset to my model:
# fit network
model.fit(dataset, dataset_target, epochs=epochs, batch_size=batch_size, verbose=1)
# evaluate model
_, accuracy = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=1)
#accuracy
I get an error Input 0 of layer "sequential" is incompatible with the layer: expected shape=(None, 223460, 5), found shape=(64, 5)