I wish to regress certain factor exposures calculated for a portfolio on that portfolios returns over 550 months (monthly observations). Fama-macbeth regression.
So essentially, regressing 550 return observations on "constant," factor exposures previously calculated. My loop thus far is as follows
'''
# Second Regression
library(sandwich)
library(broom)
library(tibble)
#Chose file containing factor exposures (note: data columns = exposures, rows = portfolios) f <- file.choose() betas <- read.csv(f)
BTM2R <- betas[1, 3]
BIPR <- betas[1, 4]
BInfR <- betas[1, 5]
BUnR <- betas[1, 6]
BOilR <- betas[1, 7]
#Chose file containing return data (columns = portfolios, rows = monthly return observations) f <- file.choose() retur <- read.csv(f)
for (i in 1:nrow(retur)){
mod <- lm(data = retur, retur[[i,1]]~BTM2R+BIPR+BInfR+BUnR+BOilR)
print(mod$coefficients)
}
'''
(I also wish to develop this loop further so that after running this regression for each portfolio, it is run for the next portfolio, such that the column number in "return," = j??? But will first address my current problem)
My current problem is that when I run the regression, all coefficient values return "NA," aside from the intercept, which returns a value. To confuse matters further, the intercept does not equal the return value at time = t, which, although the regression results would still obviously be incorrect, one would expect if all other coefficients return "NA,"