I'm trying to create a shallow simulation in 1d (sort of like this), and I've been experimenting with this guide to 2d Shallow Water Equations. However, I don't understand the math all too well, and was wondering if anybody could help me figure out a way to convert this to a 1d system. Any tips or direction would be useful. Thanks.
Here is my code thus far (pretty much all copy/pasted from tutorial):
import numpy
from matplotlib import pyplot
from numba import jit
pyplot.rcParams['font.family'] = 'serif'
pyplot.rcParams['font.size'] = 16
# Update Eta field
@jit(nopython=True) # use Just-In-Time (JIT) Compilation for C-performance
def update_eta_2D(eta, M, N, dx, dy, dt, nx, ny):
# loop over spatial grid
for i in range(1,nx-1):
for j in range(1,ny-1):
# compute spatial derivatives
dMdx = (M[j,i+1] - M[j,i-1]) / (2. * dx)
dNdy = (N[j+1,i] - N[j-1,i]) / (2. * dy)
# update eta field using leap-frog method
eta[j, i] = eta[j, i] - dt * (dMdx + dNdy)
# apply Neumann boundary conditions for eta at all boundaries
eta[0,:] = eta[1,:]
eta[-1,:] = eta[-2,:]
eta[:,0] = eta[:,1]
eta[:,-1] = eta[:,-2]
return eta
# Update M field
@jit(nopython=True) # use Just-In-Time (JIT) Compilation for C-performance
def update_M_2D(eta, M, N, D, g, h, alpha, dx, dy, dt, nx, ny):
# compute argument 1: M**2/D + 0.5 * g * eta**2
arg1 = M**2 / D
# compute argument 2: M * N / D
arg2 = M * N / D
# friction term
fric = g * alpha**2 * M * numpy.sqrt(M**2 + N**2) / D**(7./3.)
# loop over spatial grid
for i in range(1,nx-1):
for j in range(1,ny-1):
# compute spatial derivatives
darg1dx = (arg1[j,i+1] - arg1[j,i-1]) / (2. * dx)
darg2dy = (arg2[j+1,i] - arg2[j-1,i]) / (2. * dy)
detadx = (eta[j,i+1] - eta[j,i-1]) / (2. * dx)
# update M field using leap-frog method
M[j, i] = M[j, i] - dt * (darg1dx + darg2dy + g * D[j,i] * detadx + fric[j,i])
return M
# Update N field
@jit(nopython=True) # use Just-In-Time (JIT) Compilation for C-performance
def update_N_2D(eta, M, N, D, g, h, alpha, dx, dy, dt, nx, ny):
# compute argument 1: M * N / D
arg1 = M * N / D
# compute argument 2: N**2/D + 0.5 * g * eta**2
arg2 = N**2 / D
# friction term
fric = g * alpha**2 * N * numpy.sqrt(M**2 + N**2) / D**(7./3.)
# loop over spatial grid
for i in range(1,nx-1):
for j in range(1,ny-1):
# compute spatial derivatives
darg1dx = (arg1[j,i+1] - arg1[j,i-1]) / (2. * dx)
darg2dy = (arg2[j+1,i] - arg2[j-1,i]) / (2. * dy)
detady = (eta[j+1,i] - eta[j-1,i]) / (2. * dy)
# update N field using leap-frog method
N[j, i] = N[j, i] - dt * (darg1dx + darg2dy + g * D[j,i] * detady + fric[j,i])
return N
# 2D Shallow Water Equation code with JIT optimization
# -------------------------------------------------------
def Shallow_water_2D(eta0, M0, N0, h, g, alpha, nt, dx, dy, dt, X, Y):
"""
Computes and returns the discharge fluxes M, N and wave height eta from
the 2D Shallow water equation using the FTCS finite difference method.
Parameters
----------
eta0 : numpy.ndarray
The initial wave height field as a 2D array of floats.
M0 : numpy.ndarray
The initial discharge flux field in x-direction as a 2D array of floats.
N0 : numpy.ndarray
The initial discharge flux field in y-direction as a 2D array of floats.
h : numpy.ndarray
Bathymetry model as a 2D array of floats.
g : float
gravity acceleration.
alpha : float
Manning's roughness coefficient.
nt : integer
Number fo timesteps.
dx : float
Spatial gridpoint distance in x-direction.
dy : float
Spatial gridpoint distance in y-direction.
dt : float
Time step.
X : numpy.ndarray
x-coordinates as a 2D array of floats.
Y : numpy.ndarray
y-coordinates as a 2D array of floats.
Returns
-------
eta : numpy.ndarray
The final wave height field as a 2D array of floats.
M : numpy.ndarray
The final discharge flux field in x-direction as a 2D array of floats.
N : numpy.ndarray
The final discharge flux field in y-direction as a 2D array of floats.
"""
# Copy fields
eta = eta0.copy()
M = M0.copy()
N = N0.copy()
# Compute total thickness of water column D
D = eta + h
# Estimate number of grid points in x- and y-direction
ny, nx = eta.shape
# Define the locations along a gridline.
x = numpy.linspace(0, nx*dx, num=nx)
y = numpy.linspace(0, ny*dy, num=ny)
# Plot the initial wave height fields eta and bathymetry model
fig = pyplot.figure(figsize=(10., 6.))
cmap = 'seismic'
pyplot.tight_layout()
extent = [numpy.min(x), numpy.max(x),numpy.min(y), numpy.max(y)]
# Plot bathymetry model
topo = pyplot.imshow(numpy.flipud(-h), cmap=pyplot.cm.gray, interpolation='nearest', extent=extent)
# Plot wave height field at current time step
im = pyplot.imshow(numpy.flipud(eta), extent=extent, interpolation='spline36', cmap=cmap, alpha=.75, vmin = -0.4, vmax=0.4)
pyplot.xlabel('x [m]')
pyplot.ylabel('y [m]')
cbar = pyplot.colorbar(im)
cbar1 = pyplot.colorbar(topo)
pyplot.gca().invert_yaxis()
cbar.set_label(r'$\eta$ [m]')
cbar1.set_label(r'$-h$ [m]')
# activate interactive plot
pyplot.ion()
pyplot.show(block=False)
# write wave height field and bathymetry snapshots every nsnap time steps to image file
nsnap = 50
snap_count = 0
# Loop over timesteps
for n in range(nt):
# 1. Update Eta field
# -------------------
eta = update_eta_2D(eta, M, N, dx, dy, dt, nx, ny)
# 2. Update M field
# -----------------
M = update_M_2D(eta, M, N, D, g, h, alpha, dx, dy, dt, nx, ny)
# 3. Update N field
# -----------------
N = update_N_2D(eta, M, N, D, g, h, alpha, dx, dy, dt, nx, ny)
# 4. Compute total water column D
# -------------------------------
D = eta + h
# update wave height field eta
if (n % nsnap) == 0:
im.set_data(eta)
fig.canvas.draw()
# write snapshots to Tiff files
name_snap = "image_out/Shallow_water_2D_" + "%0.*f" %(0,numpy.fix(snap_count+1000)) + ".tiff"
pyplot.savefig(name_snap, format='tiff', bbox_inches='tight', dpi=125)
snap_count += 1
return eta, M, N
Lx = 100.0 # width of the mantle in the x direction []
Ly = 100.0 # thickness of the mantle in the y direction []
nx = 401 # number of points in the x direction
ny = 401 # number of points in the y direction
dx = Lx / (nx - 1) # grid spacing in the x direction []
dy = Ly / (ny - 1) # grid spacing in the y direction []
# Define the locations along a gridline.
x = numpy.linspace(0.0, Lx, num=nx)
y = numpy.linspace(0.0, Ly, num=ny)
# Define initial eta, M, N
X, Y = numpy.meshgrid(x,y) # coordinates X,Y required to define eta, h, M, N
# Define constant ocean depth profile h = 50 m
h = 50 * numpy.ones_like(X)
# Define initial eta Gaussian distribution [m]
eta0 = 0.5 * numpy.exp(-((X-50)**2/10)-((Y-50)**2/10))
# Define initial M and N
M0 = 100. * eta0
N0 = 0. * M0
# define some constants
g = 9.81 # gravity acceleration [m/s^2]
alpha = 0.025 # friction coefficient for natural channels in good condition
# Maximum wave propagation time [s]
Tmax = 6.
dt = 1/4500.
nt = (int)(Tmax/dt)
# Compute eta, M, N fields
eta, M, N = Shallow_water_2D(eta0, M0, N0, h, g, alpha, nt, dx, dy, dt, X, Y)