I tried everything and looked everywhere but can't find any solution for my question.
clc
clear all
%% Solving the Ordinary Differential Equation
G = 6.67408e-11; %Gravitational constant
M = 10; %Mass of the fixed object
r = 1; %Distance between the objects
tspan = [0 100000]; %Time Progression from 0 to 100000s
conditions = [1;0]; %y0= 1m apart, v0=0 m/s
F=@(t,y)var_r(y,G,M,r);
[t,y]=ode45(F,tspan,conditions); %ODE solver algorithm
%%part1: Plotting the Graph
% plot(t,y(:,1)); %Plotting the Graph
% xlabel('time (s)')
% ylabel('distance (m)')
%% part2: Animation of Results
plot(0,0,'b.','MarkerSize', 40);
hold on %to keep the first graph
for i=1:length(t)
k = plot(y(i,1),0,'r.','MarkerSize', 12);
pause(0.05);
axis([-1 2 -2 2]) %Defining the Axis
xlabel('X-axis') %X-Axis Label
ylabel('Y-axis') %Y-Axis Label
delete(k)
end
function yd=var_r(y,G,M,r) %function of variable r
g = (G*M)/(r + y(1))^2;
yd = [y(2); -g];
end
this is the code where I'm trying to replace the ode45 with the runge kutta method but its giving me errors. my runge kutta function:
function y = Runge_Kutta(f,x0,xf,y0,h)
n= (xf-x0)/h;
y=zeros(n+1,1);
x=(x0:h:xf);
y(1) = y0;
for i=1:n
k1 = f(x(i),y(i));
k2= f(x(i)+ h/2 , y(i) +h*(k1)/2);
y(i+1) = y(i)+(h*k2);
end
plot(x,y,'-.M')
legend('RKM')
title ('solution of y(x)');
xlabel('x');
ylabel('y(x)')
hold on
end