from tensorflow.keras.applications import VGG16
pre_trained_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model = Sequential()
model.add(pre_trained_model)
model.add(GlobalAveragePooling2D())
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
The total no. of parameters in VGG16 is 138 million. However, on checking the no. of parameters, it gives 14,977,857 only. Can anyone explain why is there a difference in the no. of total parameters. Even if I check the total no. of parameters in pre_trained_model, it is also not equal to 138 million.