The website I am trying to run the code is using an old version of R and does not accept ranger as the library. I have to use the caret package. I am trying to process about 800,000 lines in my train data frame and here is the code I use
control <- trainControl(method = 'repeatedcv',
number = 3,
repeats = 1,
search = 'grid')
tunegrid <- expand.grid(.mtry = c(sqrt(ncol(train_1))))
fit <- train(value~.,
data = train_1,
method = 'rf',
ntree = 73,
tuneGrid = tunegrid,
trControl = control)
Looking at previous posts, I tried to tune my control parameters, is there any way I can make the model run faster? Am I able to specify a specific setting so that it just generates a model with the parameters I set, and not try multiple options?
This is my code from ranger which I optimized and currently having accurate model
fit <- ranger(value ~ .,
data = train_1,
num.trees = 73,
max.depth = 35,mtry = 7,importance='impurity',splitrule = "extratrees")
Thank you so much for your time