I think you want KMeans Clustering.
# import necessary modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from collections import Counter
df = pd.read_csv('C:\\your_path_here\\properties.csv')
# df.head(10)
df = df.head(10000)
list(df)
df.shape
df.shape
df = df.sample(frac=0.2, replace=True, random_state=1)
df.shape
df = df.fillna(0)
df.isna().sum()
df['regionidzip']=df['regionidzip'].fillna(97000)
df.dropna(axis=0,how='any',subset=['latitude','longitude'],inplace=True)
X=df.loc[:,['latitude','longitude']]
zp=df.regionidzip
id_n=8
kmeans = KMeans(n_clusters=id_n, random_state=0).fit(X)
id_label=kmeans.labels_
#plot result
ptsymb = np.array(['b.','r.','m.','g.','c.','k.','b*','r*','m*','r^']);
plt.figure(figsize=(12,12))
plt.ylabel('Longitude', fontsize=12)
plt.xlabel('Latitude', fontsize=12)
for i in range(id_n):
cluster=np.where(id_label==i)[0]
plt.plot(X.latitude[cluster].values,X.longitude[cluster].values,ptsymb[i])
plt.show()
#revise the clustering based on zipcode
uniq_zp=np.unique(zp)
for i in uniq_zp:
a=np.where(zp==i)[0]
c = Counter(id_label[a])
c.most_common(1)[0][0]
id_label[a]=c.most_common(1)[0][0]
#plot result (revised)
plt.figure(figsize=(12,12))
plt.ylabel('Longitude', fontsize=12)
plt.xlabel('Latitude', fontsize=12)
for i in range(id_n):
cluster=np.where(id_label==i)[0]
plt.plot(X.latitude[cluster].values,X.longitude[cluster].values,ptsymb[i])
plt.show()

data source:
https://www.kaggle.com/c/zillow-prize-1/data
https://www.kaggle.com/xxing9703/kmean-clustering-of-latitude-and-longitude?select=zillow_data_dictionary.xlsx
Also...
https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
https://levelup.gitconnected.com/clustering-gps-co-ordinates-forming-regions-4f50caa7e4a1