I have a generalized mixed model that has 2 factors (fac1 (2 levels), fac2 (3 levels)) and 4 continuous variables (x1,x2,x3,x4) as fixed effects and a continuous response. I am interested in answering:
- are the main effects x1-x4 (slopes) significant ignoring fac1 and fac2
- are fac1 and fac2 levels significantly different from the model mean and to each other
- is there a difference in slopes between fac1 levels and fac2 levels and fac1*fac2 levels
This means I would need to include interations in my model (random effects ignored here)
say: Y~x1+x2+x3+x4+fac1+fac2+x1:fac1+x2:fac1+x3:fac1+x4:fac1+x1:fac2+x2:fac2+x3:fac2+x4:fac2
but now my coefficients for x1-x4 are based on my ref level and interpretation of the overall main effects is not possible.
Also do I have to include xi:fac1:fac2+fac1:fac2
in my model as well to answer 3)?
is there an R package that can do this? I though about refitting the model (e.g. without the interactions) to answer 1) but the data points in each factor level are not the same so ignoring this in Y~x1+x2+x3+x4
the slope of the most common factor combination may dominate the result and inference? I know you can use contrasts e.g. by not dummy coding a factor with 2 levels to 0 and 1 but -0.5,0.5 but not sure how something would look like in this case.
Would it be better to ease the model combining the factors first e.g.
fac3<-interaction(fac1,fac2) #and then
Y~x1+x2+x3+x4+x1:fac3+x2:fac3+x3:fac3+x4:fac3
But how do I answer 1-3 from that.
Thanks a lot for your advice