I'm running a nonlinear multiple regression with the nls() function with one dependent variable (Gross Primary Production (GPP)) and three independent variables (solar irradiance (RAD), Green Fractional Cover (GFC) and Volumetric Water Content (VWC)). I'm trying to follow the model of Magnani et al. (2022) which is: GPP = (Fα0RAD/ F+ α0RAD) * (A0+A1GFC+A2VWC)+ε, where F, α0, A0, A1, A2 are the parameters to estimate.
This is the code I used:
nls.3<- nls(GPP~(F*α0*RAD/(F+α0*RAD))*(A0+(A1*GFC)+(A2*VWC)), data = SCALED,start=list(F=-2.16, α0=-0.031, A0=0.021, A1=7.31, A2=0.0024),control=nls.control( minFactor=2^-148, warnOnly=TRUE,maxiter=10000))
In this attempt I took as starting values the estimated parameters of the cited model (my data are from the same site, but the year is different).
This is the output I got:
Formula: GPP ~ (F * α0 * RAD/(F + α0 * RAD)) *
(A0 + (A1 * GFC) + (A2 * VWC))
Parameters:
Estimate Std. Error t value Pr(>|t|)
F -4.063e+00 2.488e+08 0 1
α0 -5.831e-02 3.571e+06 0 1
A0 2.508e-03 1.536e+05 0 1
A1 8.720e-01 5.341e+07 0 1
A2 2.864e-04 1.754e+04 0 1
Residual standard error: 1.003 on 278 degrees of freedom
Number of iterations till stop: 10000
Achieved convergence tolerance: 0.5849
Reason stopped: il numero di iterazioni ha superato il massimo di 10000
------
Residual sum of squares: 279
------
t-based confidence interval:
------
Correlation matrix:
a b L d e
a 1 1 1 1 1
b 1 1 1 1 1
L 1 1 1 1 1
d 1 1 1 1 1
e 1 1 1 1 1
I never saw a similar output with all the t statistics = 0 and all the p values = 1.
Can someone tell me what I'm doing wrong?
[or there is another way to run this model?]
Below is a sample of the head of my data (all the variables are standardized):
RAD GFC VWC GPP
1 -0.2491831 -1.0107985 1.4436443 0.3294411
2 -0.2171896 -0.8891009 -1.2268249 0.8456750
3 -0.1498026 0.9968661 -0.8714393 -0.4678534
4 0.2738084 -1.0062102 -1.6228261 0.3982723
5 -0.5789165 -0.6060990 -0.9932858 0.6449174
6 0.1203928 -0.6509521 -0.4957459 0.1057398