I am using the FIPS 186-3 recommended curves for Diffie-Hellman Elliptic Curves. I'm trying to determine the max length of the private keys, according to RFC 5915 it should be:
ceiling (log2(n)/8) ,where n is the order of the curve
For the P-256 curve I get max length 32 which corresponds to what I'm seeing in my code (assuming an unsigned representation). However for the P-521 curve I get max length 65, however I am getting length 66 private keys in my code. Here is one example 66 bytes private key from the P-521 curve:
5367794175793176027889969828113014603157344894208126643379049713388781962338446363455749219733919077469072043715066195336337088038146192289964998476049182286
in hex:
01 90 59 2F 64 1C 73 AB F8 57 C4 F0 F2 A3 17 DD 5E 5F 64 B1 3C 61 15 8F E2 AC 34 DD 3F FC 6F 9B F1 38 9B 66 0F 27 34 60 75 E3 32 B0 B2 80 DF 9F 2A FE AC FF 82 BE 36 00 77 7A 92 B1 CB F7 7F 98 6E 4E
The public key for this was (without the leading 0x04 byte):
01 F0 64 36 14 25 89 F8 7E 0D 5F 0E F9 26 36 D7 5C 4A 45 D7 9C 86 BD F8 C5 B9 A7 AA C4 C2 EB 56 52 DD BD BE E1 A0 5B DD A1 1F D8 79 D8 BA 2A 18 68 56 C0 D7 0A 4D D6 2B AB BD 8E D9 33 7F B1 FF E5 18 00 B2 06 21 D9 DA C1 BA A2 E7 43 69 06 FF 03 2F 05 FC 0E 44 74 A1 A3 3B 2E 7E B1 68 01 B2 7F B9 94 EB 8C C7 47 D7 02 A5 46 4E 88 32 59 DD 27 DE 72 C2 6D 8D B4 3B D0 45 67 31 AF 8E 1C 30 87 42 38 9F
Does anybody know why it's possible to get 66 byte length private keys? According to the FIPS 186-3 document the order of the P-521 curve is:
n = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
Which gives ceiling (log2(n)/8) = 65.
Regards, -Martin Lansler