The following code supposes mat
is a dataframe with columns for some timestamps for each of a number of days. Each of the days, the same timestamps need to appear again.
After drawing the heatmap, the left and right limits of the x-axis are retrieved. Supposing these go from 0 to 24 hour, the range can be subdivided into 25 positions, one for each of the hours.
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from pandas.tseries.offsets import DateOffset
from matplotlib.colors import ListedColormap, to_hex
# first, create some test data
df = pd.DataFrame()
df["date"] = pd.date_range('20220304', periods=19000, freq=DateOffset(seconds=54))
df["val"] = (((np.random.rand(len(df)) ** 100).cumsum() / 2).astype(int) % 2) * 100
df['day'] = df['date'].dt.strftime('%d-%m-%Y')
df['time'] = df['date'].dt.strftime('%H:%M:%S')
mat = df.pivot(index='day', columns='time', values='val')
colors = list(plt.cm.Greens(np.linspace(0.2, 0.9, 10)))
ax = sns.heatmap(mat, cmap=colors, cbar_kws={'ticks': range(0, 101, 10)})
xmin, xmax = ax.get_xlim()
tick_pos = np.linspace(xmin, xmax, 25)
tick_labels = [f'{h:02d}:00:00' for h in range(len(tick_pos))]
ax.set_xticks(tick_pos)
ax.set_xticklabels(tick_labels, rotation=90)
ax.set(xlabel='', ylabel='')
plt.tight_layout()
plt.show()
The left plot shows the default tick labels, the right plot the customized labels.
