Am I using your suggestion correctly?
I have dataset of good and bad images (underwater images)
import os
import json
import sys
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
import random
from model import resnet34
import cv2
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
class ImageDataset():
def __init__(self, images_filepaths, transform=None):
self.images_filepaths = images_filepaths
self.transform = transform
def __len__(self):
return len(self.images_filepaths)
def __getitem__(self, idx):
image_filepath = self.images_filepaths[idx]
image = cv2.imread(image_filepath)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.transform is not None:
image = self.transform(image=image)["image"]
return image
train_transform = A.Compose([
A.RandomResizedCrop(224,224),
A.HorizontalFlip(p=0.5),
A.RandomGamma(gamma_limit=(80, 120), eps=None, always_apply=False, p=0.5),
A.RandomBrightnessContrast (p=0.5),
A.CLAHE(clip_limit=4.0, tile_grid_size=(8, 8), always_apply=False, p=0.5),
A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=15, p=0.5),
A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),
A.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
ToTensorV2(),
])
val_transform = A.Compose([
A.Resize(256,256),
A.CenterCrop(224,224),
A.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
ToTensorV2(),
])
data_root = os.path.abspath(os.path.join(os.getcwd(), "/content/gdrive/")) # get data root path
image_path = os.path.join(data_root, "MyDrive" , "totalimages") # flower data set path
assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
transform=train_transform)
train_num = len(train_dataset)
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
{'bad':1, 'good':2} #
flower_list = train_dataset.class_to_idx
image_list = train_dataset.class_to_idx
cla_dict = dict((val, key) for key, val in image_list.items()) #dictionary
# write dict into json file
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
batch_size = 64
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size, shuffle=True,
num_workers=nw)
validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
transform=val_transform)
val_num = len(validate_dataset)
validate_loader = torch.utils.data.DataLoader(validate_dataset,
batch_size=batch_size, shuffle=False,
num_workers=nw)
print("using {} images for training, {} images for validation.".format(train_num,
val_num))
net = resnet34()
# load pretrain weights
# download url: https://download.pytorch.org/models/resnet34-333f7ec4.pth
model_weight_path = "./resnet34-pre.pth"
model_weight_path = "/content/gdrive/MyDrive/resnet34-333f7ec4.pth"
assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
net.load_state_dict(torch.load(model_weight_path, map_location=device))
# for param in net.parameters():
# param.requires_grad = False
# change fc layer structure
in_channel = net.fc.in_features
net.fc = nn.Linear(in_channel, 5)
net.to(device)
# define loss function
loss_function = nn.CrossEntropyLoss()
# construct an optimizer
params = [p for p in net.parameters() if p.requires_grad]
optimizer = optim.Adam(params, lr=0.0001)
epochs = 10
best_acc = 0.0
save_path = './resNet34.pth'
train_steps = len(train_loader)
for epoch in range(epochs):
# train
net.train()
running_loss = 0.0
train_bar = tqdm(train_loader, file=sys.stdout)
for step, data in enumerate(train_bar):
images, labels = data
optimizer.zero_grad()
logits = net(images.to(device))
loss = loss_function(logits, labels.to(device))
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
epochs,
loss)
# validate
net.eval()
acc = 0.0 # accumulate accurate number / epoch
with torch.no_grad():
val_bar = tqdm(validate_loader, file=sys.stdout)
for val_data in val_bar:
val_images, val_labels = val_data
outputs = net(val_images.to(device))
# loss = loss_function(outputs, test_labels)
predict_y = torch.max(outputs, dim=1)[1]
acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
epochs)
val_accurate = acc / val_num
print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' %
(epoch + 1, running_loss / train_steps, val_accurate))
if val_accurate > best_acc:
best_acc = val_accurate
torch.save(net.state_dict(), save_path)
print('Finished Training')
if __name__ == '__main__':
main()