I'm new to rapids ai libraries. I've an existing conda environment yaml file where I'm using python 3.8.5, tensorflow 2.7.0, opencv-python-headless 4.5.5.62, numpy 1.22.2, pandas 1.4.1, pandas-profiling 3.1.0, seaborn 0.11.2, matplotlib 3.5.1, jupyterlab 3.2.9.
I've added below 2 channels to the file:
- rapidsai
- nvidia
And the below packages:
- cudf=22.02
- cudatoolkit=11.5
The installation is going on for hours and while trying to find incompatible packages, it seems to be in some sort of loop as I keep seeing below message multiple times in the terminal:
Found conflicts! Looking for incompatible packages.
Is there any known issue/limitations that I should be aware of?
Since we don't get interactive shell on GPU h/w easily, I'm trying the conda environment update on non-GPU machine and once installed, I'll try cudf package on GPU machine.
EDIT1: This is what I have as working without tensorflow and tensorflow-hub
name: cudf-env
channels:
- default
- rmg
- rapidsai
- nvidia
- numba
- conda-forge
- anaconda
dependencies:
- glibc=2.19
- libgcc-ng=11.2.0
- python=3.8.5
- cudf=22.02
- cudatoolkit=11.2
- pytest=6.1.2
- pandas=1.3.5
- numpy=1.21.5
- requests=2.25.0
- scikit-learn=0.24.2
- dill=0.3.4
- tqdm=4.62.3
- ruamel.yaml=0.17.19
- yappi=1.3.3
- black=22.1.0
- pillow=9.0.1
- jupyterlab=3.2.9
- matplotlib=3.5.1
- seaborn=0.11.2
- plotly=5.6.0
- pandas-profiling=3.1.0
- black=22.1.0
# - pip
# - pip:
# - tensorflow==2.7.0
# - tensorflow-hub==0.12.0
# - opencv-python-headless==4.5.5.62
# - opencv-contrib-python-headless==4.5.5.62
Now, if I uncomment the pip section, the anaconda crashes while creating the environment. Since pip may not be supported with cudf, I tried following as well, the conda create env
hangs while solving the environment (strangely, it's not resolving from conda-forge channel):
name: cudf-env
channels:
- default
- rmg
- rapidsai
- nvidia
- numba
- conda-forge
- anaconda
dependencies:
- glibc=2.19
- libgcc-ng=11.2.0
- python=3.8.5
- cudf=22.02
- cudatoolkit=11.2
- pytest=6.1.2
- pandas=1.3.5
- numpy=1.21.5
- requests=2.25.0
- scikit-learn=0.24.2
- dill=0.3.4
- tqdm=4.62.3
- ruamel.yaml=0.17.19
- yappi=1.3.3
- black=22.1.0
- pillow=9.0.1
- jupyterlab=3.2.9
- matplotlib=3.5.1
- seaborn=0.11.2
- plotly=5.6.0
- pandas-profiling=3.1.0
- black=22.1.0
- tensorflow
- tensorflow-hub
My system details are following:
$ cat /etc/os-release
NAME="CentOS Linux"
VERSION="7 (Core)"
$ uname -r
3.10.0-1127.10.1.el7.x86_64
EDIT2: I forgot to mention that if I comment out glibc, cudf and cudatoolkit, the tensorflow installation through pip works fine.