I have python code for the task.
import re
import string
emoji_pat = '[\U0001F300-\U0001F64F\U0001F680-\U0001F6FF\u2600-\u26FF\u2700-\u27BF]'
shrink_whitespace_reg = re.compile(r'\s{2,}')
def clean_text(raw_text):
reg = re.compile(r'({})|[^a-zA-Z0-9 -{}]'.format(emoji_pat,r"\\".join(list(string.punctuation)))) # line a
result = reg.sub(lambda x: ' {} '.format(x.group(1)) if x.group(1) else ' ', raw_text)
return shrink_whitespace_reg.sub(' ', result).lower()
I tried to use the polars polars.internals.series.StringNameSpace.contains
But I got an exceptions
ComputeError: regex error: Syntax(
regex parse error:
([--☀-⛿✀-➿])|[^a-zA-Z0-9 -!\\"\\#\\$\\%\\&\\'\\(\\)\\*\\+\\,\\-\\.\\/\\:\\;\\<\\=\\>\\?\\@\\[\\\\\]\\^\\_\\`\\{\\}\\~]
^^
error: unclosed character class
Examples with chinese english and unknown
texts = ['水虫対策にはコレが一番ですね','','I love polars!-ã„ã¤ã‚‚ã•らã•ら.','So good .']
df = pd.DataFrame({'text':texts})
d = df.text.apply(clean_text)
expected:
0
1
2 i love polars! .
3 so good .
Name: text, dtype: object
Another question:
Is it faster than use re
?