Given:
library(tidyverse)
df <- data.frame(id = c(1, 1, 1, 1, 1,
rep(2, 5), rep(3, 3)),
dates = as.Date(c("2015-01-01",
"2015-01-02",
"2015-01-02",
"2015-01-03",
"2015-01-04",
"2015-02-22",
"2015-02-23",
"2015-02-23",
"2015-02-23",
"2015-02-25",
"2015-03-13",
"2015-03-14",
"2015-03-15")),
indicator = c(0, 1, 0, 0, 0,
0, 1, 0, 0, 0,
0, 1, 0),
final_date = as.Date(rep(NA, 13))) %>%
group_by(id, dates) %>%
mutate(repeat_days = n())
df
# id dates indicator final_date repeat_days
# <dbl> <date> <dbl> <date> <int>
# 1 1 2015-01-01 0 NA 1
# 2 1 2015-01-02 1 NA 2
# 3 1 2015-01-02 0 NA 2
# 4 1 2015-01-03 0 NA 1
# 5 1 2015-01-04 0 NA 1
# 6 2 2015-02-22 0 NA 1
# 7 2 2015-02-23 1 NA 3
# 8 2 2015-02-23 0 NA 3
# 9 2 2015-02-23 0 NA 3
# 10 2 2015-02-25 0 NA 1
# 11 3 2015-03-13 0 NA 1
# 12 3 2015-03-14 1 NA 1
# 13 3 2015-03-15 0 NA 1
Based on a condition (indicator == 1
), I want to lead
dates
by a value in a variable (repeat_days
) rather than supplying a scaler value so my desired output looks like:
#df_final
# id dates indicator final_date repeat_days
# <dbl> <date> <dbl> <date> <int>
# 1 1 2015-01-01 0 NA 1
# 2 1 2015-01-02 1 2015-01-03 2
# 3 1 2015-01-02 0 NA 2
# 4 1 2015-01-03 0 NA 1
# 5 1 2015-01-04 0 NA 1
# 6 2 2015-02-22 0 NA 1
# 7 2 2015-02-23 1 2015-02-25 3
# 8 2 2015-02-23 0 NA 3
# 9 2 2015-02-23 0 NA 3
# 10 2 2015-02-25 0 NA 1
# 11 3 2015-03-13 0 NA 1
# 12 3 2015-03-14 1 2015-03-15 1
# 13 3 2015-03-15 0 NA 1
If we wanted to lead
by a scalar e.g. 1
, this works:
df %>%
group_by(id) %>%
mutate(final_date = case_when(is.na(final_date) & indicator == 1 ~
lead(dates, n = 1), TRUE ~ final_date))
But when I supply a variable it won't work as expected as its not a scalar:
df %>%
group_by(id) %>%
mutate(final_date = case_when(is.na(final_date) & indicator == 1 ~
lead(dates, repeat_days), TRUE ~ final_date))
# Error: Problem with `mutate()` column `final_date`.
# i `final_date = case_when(...)`.
# x `n` must be a nonnegative integer scalar, not an integer vector of length 5.
# i The error occurred in group 1: id = 1.
This won't work either as it refers to the first occurrence of repeat_days
by group which is 1 in all these cases:
df %>%
group_by(id) %>%
mutate(final_date = case_when(is.na(final_date) & indicator == 1 ~
lead(dates, repeat_days[1]), TRUE ~ final_date))
Is there a way to refer to the row level value of repeat_days
directly without creating an additional variable?
thanks
EDIT thanks to @Maël nice answer:
df %>%
group_by(id) %>%
mutate(final_date = case_when(is.na(final_date) & indicator == 1 ~
lead(dates, repeat_days[indicator == 1]),
TRUE ~ final_date))
I should have made it clear that I could also have repeat indicator == 1
per group so it would need to work on this dataset too:
df <- data.frame(id = c(1, 1, 1, 1, 1,
rep(2, 5), rep(3, 3), 4, 4),
dates = as.Date(c("2015-01-01",
"2015-01-02",
"2015-01-02",
"2015-01-03",
"2015-01-04",
"2015-02-22",
"2015-02-23",
"2015-02-23",
"2015-02-23",
"2015-02-25",
"2015-03-13",
"2015-03-14",
"2015-03-15",
"2015-04-15",
"2015-04-16")),
indicator = c(0, 1, 0, 1, 0,
0, 1, 0, 0, 0,
0, 1, 0, 0, 1),
final_date = as.Date(c("2015-01-01", rep(NA, 14)))) %>%
group_by(id, dates) %>%
mutate(repeat_days = n()) %>%
ungroup()
df
# id dates indicator final_date repeat_days
# <dbl> <date> <dbl> <date> <int>
# 1 1 2015-01-01 0 2015-01-01 1
# 2 1 2015-01-02 1 NA 2
# 3 1 2015-01-02 0 NA 2
# 4 1 2015-01-03 1 NA 1
# 5 1 2015-01-04 0 NA 1
# 6 2 2015-02-22 0 NA 1
# 7 2 2015-02-23 1 NA 3
# 8 2 2015-02-23 0 NA 3
# 9 2 2015-02-23 0 NA 3
# 10 2 2015-02-25 0 NA 1
# 11 3 2015-03-13 0 NA 1
# 12 3 2015-03-14 1 NA 1
# 13 3 2015-03-15 0 NA 1
# 14 4 2015-04-15 0 NA 1
# 15 4 2015-04-16 1 NA 1
Note for id == 4
, there is no lead date, so I want it to default to their current line in that case. Also the first row now already has a final_date
value in it, hence the requirement to use case_when
or something similar.
Desired output:
# id dates indicator final_date repeat_days
# <dbl> <date> <dbl> <date> <int>
# 1 1 2015-01-01 0 2015-01-01 1
# 2 1 2015-01-02 1 2015-01-03 2
# 3 1 2015-01-02 0 NA 2
# 4 1 2015-01-03 1 2015-01-04 1
# 5 1 2015-01-04 0 NA 1
# 6 2 2015-02-22 0 NA 1
# 7 2 2015-02-23 1 2015-02-25 3
# 8 2 2015-02-23 0 NA 3
# 9 2 2015-02-23 0 NA 3
# 10 2 2015-02-25 0 NA 1
# 11 3 2015-03-13 0 NA 1
# 12 3 2015-03-14 1 2015-03-15 1
# 13 3 2015-03-15 0 NA 1
# 14 4 2015-04-15 0 NA 1
# 15 4 2015-04-16 1 2015-04-16 1
Related links here, here and here but I couldn't implement something similar on this particular case with conditions. Happy to see data.table
(shift
?) solutions too.