I got this code for spectral clustering.
https://github.com/BirdYin/scllc/blob/master/scllc.py
This is a landmark-based spectral clustering code.
What does the locality_linear_coding function do in this code?
class Scllc:
def __locality_linear_coding(self, data, neighbors):
indicator = np.ones([neighbors.shape[0], 1])
penalty = np.eye(self.n_neighbors)
# Get the weights of every neighbors
z = neighbors - indicator.dot(data.reshape(-1,1).T)
local_variance = z.dot(z.T)
local_variance = local_variance + self.lambda_val * penalty
weights = scipy.linalg.solve(local_variance, indicator)
weights = weights / np.sum(weights)
weights = weights / np.sum(np.abs(weights))
weights = np.abs(weights)
return weights.reshape(self.n_neighbors)
def fit(self, X):
[n_data, n_dim] = X.shape
# Select landmarks
if self.func_landmark == 'kmeans':
landmarks, centers, unknown = k_means(X, self.n_landmarks, n_init=1, max_iter=100)
nbrs = NearestNeighbors(metric='euclidean').fit(landmarks)
# Create properties of the sparse matrix Z
[dist, indy] = nbrs.kneighbors(X, n_neighbors = self.n_neighbors)
indx = np.ones([n_data, self.n_neighbors]) * np.asarray(range(n_data))[:, None]
valx = np.zeros([n_data, self.n_neighbors])
self.delta = np.mean(valx)
# Compute all the coded data
for index in range(n_data):
# Compute the weights of its neighbors
localmarks = landmarks[indy[index,:], :]
weights = self.__locality_linear_coding(X[index,:], localmarks)
# Compute the coded data
valx[index] = weights
# Construct sparse matrix
indx = indx.reshape(n_data * self.n_neighbors)
indy = indy.reshape(n_data * self.n_neighbors)
valx = valx.reshape(n_data * self.n_neighbors)
Z = sparse.coo_matrix((valx,(indx,indy)),shape=(n_data,self.n_landmarks))
Z = Z / np.sqrt(np.sum(Z, 0))
# Get first k eigenvectors
[U, Sigma, V] = svds(Z, k = self.n_clusters + 1)
U = U[:, 0:self.n_clusters]
embedded_data = U / np.sqrt(np.sum(U * U, 0))