I am using pyspark and when a task failure occurs such as jdbc ConnectionReset in a task that retries 4 times and then the stage fails and then the job fails with SparkException. Looking at the stack trace I will see a SparkException listed and with the python printing of the exception the task failure is never even seen. I have to go to the spark ui logs to even find out what the actual error is.
This seems to be how to do it in scala spark: Spark Launcher: Can't see the complete stack trace for failed SQL query
How do you get the nested stack trace in pyspark?
Example full log message in cloudwatch logs which is where all our driver and executor logs goes but they are seperated and we don't always know which executor failed. This job has 20 executors so 21 logs in cloudwatch the driver + execetors. The driver log here does not print the executor failures and it is are truncated no idea how to change the truncation. This is also in AWS Glue but that should not matter:
Traceback (most recent call last):
File "/tmp/extractor.zip/database.py", line 173, in write_dynamic_frame_to_s3
transformation_ctx=tr_ctx,
File "/opt/amazon/lib/python3.6/site-packages/awsglue/dynamicframe.py", line 653, in from_options
format_options, transformation_ctx)
File "/opt/amazon/lib/python3.6/site-packages/awsglue/context.py", line 279, in write_dynamic_frame_from_options
format, format_options, transformation_ctx)
File "/opt/amazon/lib/python3.6/site-packages/awsglue/context.py", line 302, in write_from_options
return sink.write(frame_or_dfc)
File "/opt/amazon/lib/python3.6/site-packages/awsglue/data_sink.py", line 35, in write
return self.writeFrame(dynamic_frame_or_dfc, info)
File "/opt/amazon/lib/python3.6/site-packages/awsglue/data_sink.py", line 31, in writeFrame
return DynamicFrame(self._jsink.pyWriteDynamicFrame(dynamic_frame._jdf, callsite(), info), dynamic_frame.glue_ctx, dynamic_frame.name + "_errors")
File "/opt/amazon/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/opt/amazon/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/opt/amazon/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o703.pyWriteDynamicFrame.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
at com.amazonaws.services.glue.SparkSQLDataSink$$anonfun$writeDynamicFrame$1.apply(DataSink.scala:602)
at com.amazonaws.services.glue.SparkSQLDataSink$$anonfun$writeDynamicFrame$1.apply(DataSink.scala:589)
at com.amazonaws.services.glue.util.FileSchemeWrapper$$anonfun$executeWithQualifiedScheme$1.apply(FileSchemeWrapper.scala:89)
at com.amazonaws.services.glue.util.FileSchemeWrapper$$anonfun$executeWithQualifiedScheme$1.apply(FileSchemeWrapper.scala:89)
at com.amazonaws.services.glue.util.FileSchemeWrapper.executeWith(FileSchemeWrapper.scala:82)
at com.amazonaws.services.glue.util.FileSchemeWrapper.executeWithQualifiedScheme(FileSchemeWrapper.scala:89)
at com.amazonaws.services.glue.SparkSQLDataSink.writeDynamicFrame(DataSink.scala:588)
at com.amazonaws.services.glue.DataSink.pyWriteDynamicFrame(DataSink.scala:65)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 32 in stage 39.0 failed 4 times, most recent failure: Lost task 32.3 in stage 39.0 (TID 633, 10.131.34.154, executor 4): org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<bucket>/<database>/<table/<filename>.zlib.orc
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:703)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:247)
at org.apache.orc.impl.PhysicalFsWriter.<init>(PhysicalFsWriter.java:95)
at org.apache.orc.impl.WriterImpl.<init>(WriterImpl.java:177)
at org.apache.orc.OrcFile.createWriter(OrcFile.java:860)
at org.apache.orc.mapreduce.OrcOutputFormat.getRecordWriter(OrcOutputFormat.java:50)
at org.apache.spark.sql.execution.datasources.orc.OrcOutputWriter.<init>(OrcOutputWriter.scala:43)
at org.apache.spark.sql.execution.datasources.orc.OrcFileFormat$$anon$1.newInstance(OrcFileFormat.scala:121)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:236)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:167)
... 39 more
Caused by: org.apache.hadoop.fs.FileAlreadyExistsException: File already exists:s3://<bucket>/<database>/<table/<filename>.zlib.orc
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.checkExistenceIfNotOverwriting(RegularUploadPlanner.java:36)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.RegularUploadPlanner.plan(RegularUploadPlanner.java:30)
at com.amazon.ws.emr.hadoop.fs.s3.upload.plan.UploadPlannerChain.plan(UploadPlannerChain.java:37)
at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.create(S3NativeFileSystem.java:703)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:932)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:913)
at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.create(EmrFileSystem.java:247)
at org.apache.orc.impl.PhysicalFsWriter.<init>(PhysicalFsWriter.java:95)
at org.apache.orc.impl.WriterImpl.<init>(WriterImpl.java:177)
at org.apache.orc.OrcFile.createWriter(OrcFile.java:860)
at org.apache.orc.mapreduce.OrcOutputFormat.getRecordWriter(OrcOutputFormat.java:50)
at org.apache.spark.sql.execution.datasources.orc.OrcOutputWriter.<init>(OrcOutputWriter.scala:43)
at org.apache.spark.sql.execution.datasources.orc.OrcFileFormat$$anon$1.newInstance(OrcFileFormat.scala:121)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.newOutputWriter(FileFormatDataWriter.scala:120)
at org.apache.spark.sql.execution.datasources.SingleDirectoryDataWriter.<init>(FileFormatDataWriter.scala:108)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:236)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
During handling of the above exception, another exception occurred:
But in the spark ui logs I see the real error Caused by: com.microsoft.sqlserver.jdbc.SQLServerException: Connection reset
:
..."Full Stack Trace":"org.apache.spark.SparkException: Task failed while writing rows.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:257)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:170)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:169)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: com.microsoft.sqlserver.jdbc.SQLServerException: Connection reset
at com.microsoft.sqlserver.jdbc.SQLServerConnection.terminate(SQLServerConnection.java:2392)
at com.microsoft.sqlserver.jdbc.SQLServerConnection.terminate(SQLServerConnection.java:2376)
at com.microsoft.sqlserver.jdbc.TDSChannel.read(IOBuffer.java:1900)
at com.microsoft.sqlserver.jdbc.TDSReader.readPacket(IOBuffer.java:6674)
at com.microsoft.sqlserver.jdbc.TDSReader.nextPacket(IOBuffer.java:6627)
at com.microsoft.sqlserver.jdbc.TDSReader.ensurePayload(IOBuffer.java:6603)
at com.microsoft.sqlserver.jdbc.TDSReader.readBytes(IOBuffer.java:6896)
at com.microsoft.sqlserver.jdbc.TDSReader.readWrappedBytes(IOBuffer.java:6918)
at com.microsoft.sqlserver.jdbc.TDSReader.readUnsignedShort(IOBuffer.java:6833)
at com.microsoft.sqlserver.jdbc.ServerDTVImpl.getValuePrep(dtv.java:3625)
at com.microsoft.sqlserver.jdbc.ServerDTVImpl.getValue(dtv.java:3990)
at com.microsoft.sqlserver.jdbc.DTV.getValue(dtv.java:237)
at com.microsoft.sqlserver.jdbc.Column.getValue(Column.java:162)
at com.microsoft.sqlserver.jdbc.SQLServerResultSet.getValue(SQLServerResultSet.java:2100)
at com.microsoft.sqlserver.jdbc.SQLServerResultSet.getValue(SQLServerResultSet.java:2085)
at com.microsoft.sqlserver.jdbc.SQLServerResultSet.getString(SQLServerResultSet.java:2428)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$10.apply(JdbcUtils.scala:444)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$org$apache$spark$sql$execution$datasources$jdbc$JdbcUtils$$makeGetter$10.apply(JdbcUtils.scala:442)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anon$1.getNext(JdbcUtils.scala:356)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anon$1.getNext(JdbcUtils.scala:338)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:31)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:462)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$GroupedIterator.takeDestructively(Iterator.scala:1073)
at scala.collection.Iterator$GroupedIterator.go(Iterator.scala:1089)
at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:1127)
at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:1130)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:891)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:224)
at org.apache.spark.sql.execution.python.PythonUDFRunner$$anon$2.writeIteratorToStream(PythonUDFRunner.scala:50)
at org.apache.spark.api.python.BasePythonRunner$WriterThread$$anonfun$run$1.apply(PythonRunner.scala:345)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1945)
at org.apache.spark.api.python.BasePythonRunner$WriterThread.run(PythonRunner.scala:194)
All I want is to print the nested exception so that we can quickly diagnose the errors as they occur. Since I am in AWS Glue the spark ui logs are not always up-to-date for some reason which is a problem. Sometimes the stage is pending in the ui logs, but the job failed so we cannot determine the root cause, if we could print the nested stack trace to get the root failure we would not have that problem.