If we are given a multinomial distribution
p=[0.2,0.4,0.1,0.3]
and we have to sample from this distribution over a number of times and return the result, how do I write the algorithm for this?
Eg - if I have a fair die and I want to roll it 20 time and get the total number of times that it landed on which side,
[4, 1, 7, 5, 2, 1]
this should be the result(randomized) -> It landed 4 times on 1, once on 2, etc. There is a function to do this in Numpy in numpy we can use
numpy.random.multinomial()
>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]]) # random
I want to understand how the algorithm is written for performing this action I've tried this approach in python ->
import numpy as np
import random
probs = [0.2, 0.4, 0.1, 0.3]
def sample(count:int)->list:
output = [0,0,0,0]
for i in range(count):
num = random.random()
if(0 < num <= 0.15):
output[2]+=1
elif(0.15 < num <= 0.25):
output[0]+=1
elif(0.25 < num <= 0.35):
output[3]+=1
elif(0.35 < num <= 0.45):
output[1]+=1
return output
final_output = sample(10)
print(final_output)
np.random.multinomial(10, probs, size=1)
But I don't think this is the optimal way, maybe I'm lacking some concepts in Probability?
The actual Code written in Numpy in CPython: Link to the Numpy file where the code for numpy.random.multinomial() is written starting from line 4176
Possible Duplicate: How to sample from a multinomial distribution?
References: https://numpy.org/doc/stable/reference/random/generated/numpy.random.multinomial.html
Random number generation from multinomial distribution in R using rmultinom() function