I am currently working with time series data which looks something like the following:
ID | Var1 | Var2 | Var3 | Var4 | Var5 |
---|---|---|---|---|---|
1 | A | NA | A | NA | A |
2 | B | C | NA | NA | B |
3 | A | A | NA | NA | A |
4 | A | B | NA | NA | B |
5 | C | NA | B | NA | B |
df <- data.frame("ID" = c(1, 2, 3, 4, 5),
"Var1" = c("A", "B", "A", "A", "C"),
"Var2" = c(NA, "C", "A", "B", NA),
"Var3" = c("A", NA, NA, NA, "B"),
"Var4" = c(NA, NA, NA, NA, NA),
"Var5" = c("A", "B", "A", "B", "B"))
I wish to fill in the "NA" values if the first non-missing previous and first non-missing next value are consistent. That is, the desired result would be
ID | Var1 | Var2 | Var3 | Var4 | Var5 |
---|---|---|---|---|---|
1 | A | A | A | A | A |
2 | B | C | NA | NA | B |
3 | A | A | A | A | A |
4 | A | B | B | B | B |
5 | C | NA | B | B | B |
Where the data for ID = 2 is not replaced, since Var2 and Var5 do not match. Moreover, the missing value for ID = 2 at Var2 is not replaced, since Var1 and Var3 are not consistent. I am struggling with how to accomplish this, and any help would be appreciated.