I'm facing an issue with scikit-learn version 1.0.2:
model = OneVsRestClassifier(RandomForestClassifier())
parameters = {'estimator__n_estimators': [50, 100, 200],
'estimator__criterion': ['gini', 'entropy'],
'estimator__max_depth': range(10, 25),
'estimator__min_samples_split': [2, 5, 8],
'estimator__max_features': ['sqrt'],
'estimator__min_samples_leaf': [1, 2, 5, 8],
'estimator__class_weight': ['balanced']}
model_tunning = GridSearchCV(model,
param_grid=parameters,
scoring='precision_micro',
n_jobs = 8,
verbose = 10)
model_tunning.fit(X_train, y_train)
For some reason no progress happening after significant amount of time. In comparison with version 0.20.3 it shows more fits. I also checked syntax with shift+tab in order to see if there is a difference.
I also updated numpy to 1.21.1 and mock to 4.0.3. I there any other versions of different packages needed?