0

I have data in PySpark with string array:

+----------+----------+
|   user_id|   actions|
+----------+----------+
|         1|     [a,b]|
|         2|       [b]|
|         3|     [a,b]|
+----------+----------+

I'm trying to insert this into Postgres:

# remember to use full URL, i.e. jdbc:postgresql://
db_url = "jdbc:postgresql://localhost:5433/test_db"
table = "user_actions"

(
    df
    .write
    .format("jdbc")
    .option("url", db_url)
    .option("dbtable", table)
    .option("user", "postgres")
    .option("password", "postgres")
    .mode("overwrite")
    .save()
)

I get an error:

Py4JJavaError: An error occurred while calling o365.save.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 8.0 failed 1 times, most recent failure: Lost task 0.0 in stage 8.0 (TID 8) (192.168.0.80 executor driver): java.lang.RuntimeException: Error while encoding: java.lang.RuntimeException: scala.collection.convert.Wrappers$JListWrapper is not a valid external type for schema of string
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 0, member_id), LongType) AS member_id#374L
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 1, community_id), LongType) AS community_id#375L
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 2, added), StringType), true, false) AS added#376
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 3, modified), StringType), true, false) AS modified#377
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 4, removed), StringType), true, false) AS removed#378
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, TimestampType, fromJavaTimestamp, validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 5, event_date), TimestampType), true, false) AS event_date#379
if (assertnotnull(input[0, org.apache.spark.sql.Row, true]).isNullAt) null else validateexternaltype(getexternalrowfield(assertnotnull(input[0, org.apache.spark.sql.Row, true]), 6, _processable), BooleanType) AS _processable#380
    at org.apache.spark.sql.errors.QueryExecutionErrors$.expressionEncodingError(QueryExecutionErrors.scala:1052)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:210)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:193)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:759)
    at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
    at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.savePartition(JdbcUtils.scala:708)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.$anonfun$saveTable$1(JdbcUtils.scala:890)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$.$anonfun$saveTable$1$adapted(JdbcUtils.scala:888)
    at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2(RDD.scala:1020)
    at org.apache.spark.rdd.RDD.$anonfun$foreachPartition$2$adapted(RDD.scala:1020)
    at org.apache.spark.SparkContext.$anonfun$runJob$5(SparkContext.scala:2254)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:131)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1462)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: scala.collection.convert.Wrappers$JListWrapper is not a valid external type for schema of string
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.StaticInvoke_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.writeFields_0_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:207)
    ... 21 more

So it doesn't like arrays. I tried adding this explicitly:

    .option("createTableColumnTypes", "user_id INTEGER, actions ARRAY")

With this, I get:

ParseException: 
DataType array is not supported.(line 1, pos 47)

== SQL ==
user_id INTEGER, actions ARRAY
-------------------------^^^

I've seen a similar question, but the answer does not work (I am using Postgres driver).

Is inserting a string array into Postgres from PySpark possible? If so, how can I do that?

qalis
  • 1,314
  • 1
  • 16
  • 44

1 Answers1

0

I made a rookie mistake actually - I reused the old variable in Jupyter Notebook (df) and missed that. After fixing this (changing the variable name basically) this works out-of-the-box, text[] type is created.

qalis
  • 1,314
  • 1
  • 16
  • 44