If you are wanting it to run quicker, then you might want to use apply
to avoid using a for loop and also filter the rows by the condition beforehand. Here, I first subset the dataframe to just cyl == 8
. Then, I use apply
to assign a random point for each row in the dataframe, which I have to turn into a dataframe and transpose (to make it a column). Then, I bind this back to the subset. Then, if we want to bind back to the other columns, then we create a subset and add a geometry
column.
library(sf)
shape <- st_read(system.file("shape/nc.shp", package = "sf"))
test <- mtcars
test2 <- test[test$cyl == 8, ]
test_geom <-
cbind(test2, t(data.frame(apply(test2, 1, function(x)
st_sample(shape, 1)))))
colnames(test_geom)[12] <- "geometry"
# If we want to bind back to original dataframe.
test_orig <- test[test$cyl != 8, ]
test_orig$geometry <- NA
test_update <- rbind(test_orig, test_geom)
Output
mpg cyl disp hp drat wt qsec vs am gear carb geometry
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 NA
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 NA
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 NA
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 NA
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 NA
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 NA
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 NA
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 NA
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 NA
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 NA
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 NA
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 NA
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 NA
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 NA
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 NA
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 NA
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 NA
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 NA
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 -78.19193, 35.71174
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 -79.49398, 36.40921
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 -82.5198, 35.5307
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 -82.75768, 35.87617
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 -78.25614, 35.12009
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 -82.79324, 35.80735
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 -81.77563, 35.26631
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 -76.52665, 36.35889
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 -79.87681, 36.15730
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 -78.49396, 33.98547
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 -82.41442, 35.33043
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 -77.32198, 35.54528
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 -78.82262, 35.95355
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 -78.66652, 36.45250
Or if you are wanting to have an actual geometry
column, then you would need to filter out the NA
values. So, you could do something like this:
library(tidyverse)
shape <- st_read(system.file("shape/nc.shp", package = "sf"))
test <- mtcars %>%
mutate(long = NA,
lat = NA)
for (i in 1:nrow(test)) {
cylSelected <- test[i,]$cyl
if (cylSelected == 8) {
randomPoint <- st_sample(shape, 1)
test$lat[i] = unlist(map(randomPoint,2))
test$long[i] = unlist(map(randomPoint,1))
}
}
results <- test %>%
filter(!is.na(long)) %>%
st_as_sf(coords = c("long", "lat"), dim = "XY") %>%
st_set_crs(4326)
Output
Simple feature collection with 14 features and 11 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -82.97979 ymin: 34.76474 xmax: -76.12151 ymax: 36.36894
Geodetic CRS: WGS 84
First 10 features:
mpg cyl disp hp drat wt qsec vs am gear carb geometry
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 POINT (-80.26734 35.89567)
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 POINT (-82.97979 35.46915)
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 POINT (-77.31967 34.76474)
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 POINT (-77.99282 34.84682)
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 POINT (-81.13808 36.15261)
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 POINT (-78.51336 34.88909)
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 POINT (-76.12151 35.7968)
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 POINT (-81.68257 35.49511)
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 POINT (-76.37177 36.36894)
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 POINT (-77.49992 35.83624)
