I want to basically find out how many users paid within 15 mins, 30 mins and 60 mins of my payment_time
and trigger_time
I have the following query
with redshift_direct() as conn:
trigger_time_1 = pd.read_sql(f"""
with new_data as
(
select
cycle_end_date
, prime_tagging_by_issuer_and_product
, u.user_id
, settled_status
, delay,
ots_created_at + interval '5:30 hours' as payment_time
,case when to_char(cycle_end_date,'DD') = '15' then 'Odd' else 'Even' end as cycle_order
from
settlement_summary_from_snapshot s
left join (select distinct user_phone_number, user_id from user_events where event_name = 'UserCreatedEvent') u
on u.user_id = s.user_id
and cycle_type = 'end_cycle'
and cycle_end_date > '2021-11-30' and cycle_end_date < '2022-01-15'
)
select
bucket_id
, cycle_end_date, d.cycle_order
, date(cycle_end_date) as t_cycle_end_date
,d.prime_tagging_by_issuer_and_product
,source
,status as cause
,split_part(campaign_name ,'|', 1) as campaign
,split_part(campaign_name ,'|', 2) as sms_cycle_end_date
,split_part(campaign_name ,'|', 3) as day
,split_part(campaign_name ,'|', 4) as type
,to_char(to_date(split_part(campaign_name ,'|', 2) , 'DD/MM/YYYY'), 'YYYY-MM-DD') as campaign_date,
d.payment_time, payload_event_timestamp + interval '5:30 hours' as trigger_time
,count( s.user_id) as count
from sms_callback_events s
inner join new_data d
on s.user_id = d.user_id
where bucket_id > 'date_2021_11_30' and bucket_id < 'date_2022_01_15'
and campaign_name like '%RC%'
and event_name = 'SmsStatusUpdatedEvent'
group by 1,2,3,4,5,6,7,8,9,10,11,12,13,14
""",conn)
How do i achieve making 3 columns with number of users who paid within 15mins, 30 mins and 60 mins after trigger_time
in this query? I was doing it with Pandas but I want to find a way to do it here itself. Can someone help?