You would need to build the binary two times, for example, for a project that's targeting macOS, you would compile once with -target x86_64-apple-macos10.15
and the other one with -target arm64-apple-macos10.15
.
After that, you would use lipo -create
to stitch those together into a single file like this lipo -create <path/to/arm64-slice> <path/to/x86_64-slice> -output <path/to/universal/binary>
.
This is how I did it:
➜ UniversalBinaryTest swiftc source.swift -target x86_64-apple-macos10.15 -o binary_x86-64
➜ UniversalBinaryTest lipo -archs binary_x86-64
x86_64
➜ UniversalBinaryTest swiftc source.swift -target arm64-apple-macos10.15 -o binary_arm64
➜ UniversalBinaryTest lipo -archs binary_arm64
arm64
➜ UniversalBinaryTest lipo -create binary_x86-64 binary_arm64 -output binary_universal
➜ UniversalBinaryTest lipo -archs binary_universal
x86_64 arm64
After all of that, you would probably want to re-sign the new binary.
Edit: Actually, it looks like lipo handles signing for you if both slices are signed:
➜ UniversalBinaryTest codesign -s - binary_x86-64
➜ UniversalBinaryTest codesign -vvv binary_x86-64
binary_x86-64: valid on disk
binary_x86-64: satisfies its Designated Requirement
➜ UniversalBinaryTest codesign -vvvvv binary_x86-64
binary_x86-64: valid on disk
binary_x86-64: satisfies its Designated Requirement
➜ UniversalBinaryTest codesign -s - binary_arm64
➜ UniversalBinaryTest lipo -create binary_x86-64 binary_arm64 -output binary_universal
➜ UniversalBinaryTest codesign -vvv binary_universal
binary_universal: valid on disk
binary_universal: satisfies its Designated Requirement