I am trying to model a system of coupled ODEs which represent a three-box ocean model of phosphorous concentration (y) in the low-latitude surface ocean (Box 1), high-latitude deep ocean (Box 2), and deep ocean (Box 3). The ODEs are given below:
dy1dt = (Q/V1)*(y3-y1) - y1/tau # dP/dt in Box 1
dy2dt = (Q/V2)*(y1-y2) + (qh/V2)*(y3-y2) - (fh/V2) # dP/dt in Box 2
dy3dt = (Q/V3)*(y2-y3) + (qh/V3)*(y2-y3) + (V1*y1)/(V3*tau) + (fh/V3) # dP/dt in Box 3
The constants and box volumes are given by:
### Define Constants
tau = 86400 # s
VT = 1.37e18 # m3
Q = 25e6 # m3/s
qh = 38e6 # m3/s
fh = 0.0022 # mol/m3
avp = 0.00215 # mol/m3
### Calculate Surface Area of Ocean
r = 6.4e6 # m
earth = 4*np.pi*(r**2) # m2
ocean = .70*earth # m2
### Calculate Volumes for Each Box
V1 = .85*100*ocean # m3
V2 = .15*250*ocean # m3
V3 = VT-V1-V2 # m3
This can be put into matrix form y = Ay + f, where y = [y1, y2, y3]. I have provided the matrices and initial conditions below:
A = np.array([[(-Q/V1)-(1/tau),0,(Q/V1)],
[(Q/V2),(-Q/V2)-(qh/V2),(qh/V2)],
[(V1/(V3*tau)),((Q+qh)/V3),((-Q-qh)/V3)]])
f = np.array([[0],[-fh/V2],[fh/V3]])
y1 = y2 = y3 = 0.00215 # mol/m3
I am having trouble adapting the Forward Euler method to apply to a system on linear ODEs, rather than just one. This is what I have come up with so far (it runs with no issues but doesn't work if that makes sense; I think it has something t do with initial conditions?):
### Define a Function for the Euler-Forward Scheme
import numpy as np
def ForwardEuler(t0,y0,N,dt):
N = 100
dt = 0.1
# Create empty 2D arrays for t and y
t = np.zeros([N+1,3,3]) # steps, # variables, # solutions
y = np.zeros([N+1,3,3])
# Assign each ODE to a vector element
y1 = y[0]
y2 = y[1]
y3 = y[2]
# Set initial conditions for each solution
t[0, 0] = t0[0]
y[0, 0] = y0[0]
t[0, 1] = t0[1]
y[0, 1] = y0[1]
t[0, 2] = t0[2]
y[0, 2] = y0[2]
for i in trange(int(N)):
t[i+1] = t[i] + t[i]*dt
y1[i+1] = y1[i] + ((Q/V1)*(y3[i]-y1[i]) - (y1[i]/tau))*dt
y2[i+1] = y2[i] + ((Q/V2)*(y1[i]-y2[i]) + (qh/V2)*(y3[i]-y2[i]) - (fh/V2))*dt
y3[i+1] = y3[i] + ((Q/V3)*(y2[i]-y3[i]) + (qh/V3)*(y2[i]-y3[i]) + (V1*y1[i])/(V3*tau) + (fh/V3))*dt
return t, y1, y2, y3
Any help on this is greatly appreciated. I have not found any resources online that go through the Euler Forward for a system of 3 ODEs, and am at a loss. I am happy to explain further if there are more questions.