I have the following model:
ExpressionsBasedModel model = new ExpressionsBasedModel();
Variable va = model.addVariable("va")
.lower(0);
Variable vb = model.addVariable("vb")
.lower(0);
Variable vc = model.addVariable("vc")
.lower(0);
Variable vd = model.addVariable("vd")
.lower(0);
Variable ve = model.addVariable("ve")
.lower(0);
Expression ef = model.addExpression("ef")
.lower(0);
Expression eg = model.addExpression("eg")
.lower(0);
Expression eh = model.addExpression("eh")
.lower(-240);
Expression ei = model.addExpression("ei")
.lower(0);
Expression ej = model.addExpression("ej")
.lower(0);
Expression ek = model.addExpression("ek")
.lower(0);
Expression el = model.addExpression("el")
.lower(-2000);
ef.set(va, -50);
el.set(va, -100);
eg.set(va, 100);
eh.set(vb, -30);
ef.set(vb, 40);
ej.set(vb, 20);
ek.set(vc, -30);
eg.set(vc, -30);
ei.set(vc, 60);
ei.set(vd, -30);
eg.set(vd, -30);
ek.set(vd, 60);
ej.set(ve, -40);
el.set(ve, -40);
ek.set(ve, 20);
ei.weight(1);
ek.weight(1);
/*
* These next 2 lines required to get balanced solution.
* Without them ei = 720 and ek = 0.
*/
// ek.lower(360);
// ei.lower(360);
model.maximise();
BasicLogger.debug(model);
Although ei
and ek
are equally weighted, the solution I get is:
############################################
0 <= va: 6.4 <= 6.4
0 <= vb: 8 <= 8
0 <= vc: 15.111111 (300)
0 <= vd: 6.222222 (300)
0 <= ve: 4 (200) <= 4
0 <= ef: 0.0
0 <= eg: 0.0
-240 <= eh: -240.0
0 <= ei: 720.0
0 <= ej: 0.0
0 <= ek: -0.0
-2000 <= el: -800.0
############################################
ei == 720, ek == 0
.
I would prefer a solution in which ei
and ek
are as balanced as possible, (ei == 360, ek == 360
). Is there some way of encoding that requirement for "as balanced as possible" as a weighted expression?
In this specific example I have commented out the lower value constraint that actually result in the behavior I want. In real life, the model is dynamic and I may have 5 equally weighted expressions. I won't know the correct values in order to set the lower constraints.