We ended up using a few loops to do this.
Note that our answer builds off a model posted in this OP if anyone wants the background script. We will also link to the published script when it is posted.
For now - this is should give a general idea of how we did this.
#Individual fits dataframe generation
yid_list <- unique(young_inds$squirrel_id)
indf_prs <- list('df', 'squirrel_id', 'A_value', 'k_value', 'mx_value', 'my_value', 'max_grate', 'hit_asymptote', 'age_asymptote', 'ind_asymptote', 'ind_mass_asy', 'converge') #List of parameters
ind_fits <- data.frame(matrix(ncol = length(indf_prs), nrow = length(yid_list))) #Blank dataframe for all individual fits
colnames(ind_fits) <- indf_prs
#Calculates individual fits for all individuals and appends into ind_fits
for (i in 1:length(yid_list)) {
yind_df <-young_inds%>%filter(squirrel_id %in% yid_list[i]) #Extracts a dataframe for each squirrel
ind_fits[i , 'squirrel_id'] <- as.numeric(yid_list[i]) #Appends squirrel i's id into individual fits dataframe
sex_lab <- unique(yind_df$sex) #Identifies and extracts squirrel "i"s sex
mast_lab <- unique(yind_df$b_mast) #Identifies and extracts squirrel "i"s mast value
Hi_dp <- max(yind_df$wt) #Extracts the largest mass for each squirrel
ind_long <- unique(yind_df$longevity) #Extracts the individual death date
#Sets corresponding values for squirrel "i"
if (mast_lab==0 && sex_lab=="F") { #Female no mast
ind_fits[i , 'df'] <- "fnm" #Squirrel dataframe (appends into ind_fits dataframe)
df_asm <- af_asm #average asymptote value corresponding to sex
df_B_guess <- guess_df[1, "B_value"] #Inital guesses for nls fits corresponding to sex and mast sex and mast
df_k_guess <- guess_df[1, "k_value"]
df_mx_guess <- guess_df[1, "mx_value"]
df_my_guess <- guess_df[1, "my_value"]
ind_asyr <- indf_asy #growth rate at individual asymptote
} else if (mast_lab==0 && sex_lab=="M") { #Male no mast
ind_fits[i , 'df'] <- "mnm"
df_asm <- am_asm
df_B_guess <- guess_df[2, "B_value"]
df_k_guess <- guess_df[2, "k_value"]
df_mx_guess <- guess_df[2, "mx_value"]
df_my_guess <- guess_df[2, "my_value"]
ind_asyr <- indm_asy
} else if (mast_lab==1 && sex_lab=="F") { #Female mast
ind_fits[i , 'df'] <- "fma"
df_asm <- af_asm
df_B_guess <- guess_df[3, "B_value"]
df_k_guess <- guess_df[3, "k_value"]
df_mx_guess <- guess_df[3, "mx_value"]
df_my_guess <- guess_df[3, "my_value"]
ind_asyr <- indm_asy
} else if (mast_lab==1 && sex_lab=="M") { #Males mast
ind_fits[i , 'df'] <- "mma"
df_asm <- am_asm
df_B_guess <- guess_df[4, "B_value"]
df_k_guess <- guess_df[4, "k_value"]
df_mx_guess <- guess_df[4, "mx_value"]
df_my_guess <- guess_df[4, "my_value"]
ind_asyr <- indf_asy
} else { #If sex or mast is not identified or identified improperlly in the data
print("NA")
} #End of if else loop
#Arctangent
#Fits nls model to the created dataframe
nls.floop <- tryCatch({data.frame(tidy(nls(wt~ B*atan(k*(age - mx)) + my, #tryCatch lets nls have alternate results instead of "code stopping" errors
data=yind_df,
start = list(B = df_B_guess, k = df_k_guess, mx = df_mx_guess, my = df_my_guess),
control= list(maxiter = 200000, minFactor = 1/100000000))))
},
error = function(e){
nls.floop <- data.frame(c(0,0), c(0,0)) #Specifies nls.floop as a dummy dataframe if no convergence
},
warning = function(w) {
nls.floop <- data.frame(tidy(nls.floop)) #Fit is the same if warning is displayed
}) #End of nls.floop
#Creates a dummy numerical index from nls.floop for if else loop below
numeric_floop <- as.numeric(nls.floop[1, 2])
#print(numeric_floop) #Taking a look at the values. If numaric floop...
# == 0, function did not converge on iteration "i"
# != 0, function did converge on rapid "i" and code will run through calculations
if (numeric_floop != 0) {
results_DF <- nls.floop
ind_fits[i , 'converge'] <- 1 #converge = 1 for converging fit
#Extracting, calculating, and appending values into dataframe
B_value <- as.numeric(results_DF[1, "estimate"]) #B value
k_value <- as.numeric(results_DF[2, "estimate"]) #k value
mx_value <- as.numeric(results_DF[3, "estimate"]) #mx value
my_value <- as.numeric(results_DF[4, "estimate"]) #my value
A_value <- ((B_value*pi)/2)+ my_value #A value calculation
ind_fits[i , 'A_value'] <- A_value
ind_fits[i , 'k_value'] <- k_value
ind_fits[i , 'mx_value'] <- mx_value
ind_fits[i , 'my_value'] <- my_value #appends my_value into df
ind_fits[i , 'max_grate'] <- adr(mx_value, B_value, k_value, mx_value, my_value) #Calculates max growth rate
}
} #End of individual fits loop
Which gives this output:
> head(ind_fits%>%select(df, squirrel_id, A_value, k_value, mx_value, my_value))
df squirrel_id A_value k_value mx_value my_value
1 mnm 332 257.2572 0.05209824 52.26842 126.13183
2 mnm 1252 261.0728 0.02810033 42.37454 103.02102
3 mnm 3466 260.4936 0.03946594 62.27705 131.56665
4 fnm 855 437.9569 0.01347379 86.18629 158.27641
5 fnm 2409 228.7047 0.04919819 63.99252 123.63404
6 fnm 1417 196.0578 0.05035963 57.67139 99.65781
Note that you need to create a blank dataframe first before running the loops.