i am new to programing an trying to learn it. As I am always looking for new intressting python tutorials i have come accross an tutorial for a sudoku solver using backtracking technique.
https://www.techwithtim.net/tutorials/python-programming/sudoku-solver-backtracking/
Since this sudoku solver only shows one single solution, I was wondering if there was a way to set a count on how many solutions of a sudoku can be found. Or how I can modify the code so that it doesn't stop after finding a solution but keeps on looking for other possible solutions. I don't know how i can get it to backtrack again to find other solutions. I was already looking this problem up on the internet but most of the solutions i found didn't really fit to my problem. If someone has an idea on how to do this I would be really happy about any help i can get, since i am worrying about this problem for a long time now. Already thank you for helping me, looking forward to maybe being able to solving my problem:)
board = [
[7,8,0,4,0,0,1,2,0],
[6,0,0,0,7,5,0,0,9],
[0,0,0,6,0,1,0,7,8],
[0,0,7,0,4,0,2,6,0],
[0,0,1,0,5,0,9,3,0],
[9,0,4,0,6,0,0,0,5],
[0,7,0,3,0,0,0,1,2],
[1,2,0,0,0,7,4,0,0],
[0,4,9,2,0,6,0,0,7]
]
def solve(bo):
find = find_empty(bo)
if not find:
return True
else:
row, col = find
for num in range(1,10):
if valid(bo, num, (row, col)):
bo[row][col] = num
if solve(bo):
return True
bo[row][col] = 0
return False
def valid(bo, num, pos):
# Check row
for field in range(len(bo[0])):
if bo[pos[0]][field] == num and pos[1] != field:
return False
# Check column
for line in range(len(bo)):
if bo[line][pos[1]] == num and pos[0] != line:
return False
# Check box
box_x = pos[1] // 3
box_y = pos[0] // 3
for i in range(box_y*3, box_y*3 + 3):
for j in range(box_x * 3, box_x*3 + 3):
if bo[i][j] == num and (i,j) != pos:
return False
return True
def print_board(bo):
for i in range(len(bo)):
if i % 3 == 0 and i != 0:
print("- - - - - - - - - - - - - ")
for j in range(len(bo[0])):
if j % 3 == 0 and j != 0:
print(" | ", end="")
if j == 8:
print(bo[i][j])
else:
print(str(bo[i][j]) + " ", end="")
def find_empty(bo):
for i in range(len(bo)):
for j in range(len(bo[0])):
if bo[i][j] == 0:
return (i, j) # row, col
return None
if __name__ == "__main__":
print_board(board)
solve(board)
print("___________________")
print("")
print_board(board)