I'm using R to run a logistic multilevel model with random intercepts. I'm using the frequentist approach (glmer). I'm not able to use Bayesian methods due to the research centre's policy.
When I run my code it says that my model is singular. I'm not sure why or how to fix the issue. Any advice would be appreciated!
More information about the multilevel model I used:
I'm using a multilevel modelling method used in intersectionality research called multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA). The method uses individual level data as level 2 (the intersection group) and nests individuals within their intersections.
My outcome is binary and I have three categorical variables as fixed effects (gender, martial status, and disability). The random effect (level 2) is called intersect1 which includes each unique combination of the categorical variables (gender x marital x disability).
This is the code:
MAIHDA_full <- glmer(IPV_pos ~ factor(sexgender) + factor(marital) + factor(disability) + (1|intersect1), data=Data, family=binomial, control=glmerControl(optimizer=”bobyqa”,optCtrl=list(maxfun=2e5)))