I want to see if it's possible to write some generic SIMD code that can compile efficiently. Mostly for SSE, AVX, and NEON. A simplified version of the problem is: Find the maximum absolute value of an array of floating point numbers and return both the value and the index. It is the last part, the index of the maximum, that causes the problem. There doesn't seem to be a very good way to write code that has a branch.
See update at end for finished code using some of the suggested answers.
Here's a sample implementation (more complete version on godbolt):
#define VLEN 8
typedef float vNs __attribute__((vector_size(VLEN*sizeof(float))));
typedef int vNb __attribute__((vector_size(VLEN*sizeof(int))));
#define SWAP128 4,5,6,7, 0,1,2,3
#define SWAP64 2,3, 0,1, 6,7, 4,5
#define SWAP32 1, 0, 3, 2, 5, 4, 7, 6
static bool any(vNb x) {
x = x | __builtin_shufflevector(x,x, SWAP128);
x = x | __builtin_shufflevector(x,x, SWAP64);
x = x | __builtin_shufflevector(x,x, SWAP32);
return x[0];
}
float maxabs(float* __attribute__((aligned(32))) data, unsigned n, unsigned *index) {
vNs max = {0,0,0,0,0,0,0,0};
vNs tmax;
unsigned imax = 0;
for (unsigned i = 0 ; i < n; i += VLEN) {
vNs t = *(vNs*)(data + i);
t = -t < t ? t : -t; // Absolute value
vNb cmp = t > max;
if (any(cmp)) {
tmax = t; imax = i;
// broadcast horizontal max of t into every element of max
vNs tswap128 = __builtin_shufflevector(t,t, SWAP128);
t = t < tswap128 ? tswap128 : t;
vNs tswap64 = __builtin_shufflevector(t,t, SWAP64);
t = t < tswap64 ? tswap64 : t;
vNs tswap32 = __builtin_shufflevector(t,t, SWAP32);
max = t < tswap32 ? tswap32 : t;
}
}
// To simplify example, ignore finding index of true value in tmax==max
*index = imax; // + which(tmax == max);
return max[0];
}
Code on godbolt allows changing VLEN to 8 or 4.
This mostly works very well. For AVX/SSE the absolute value becomes t & 0x7fffffff
using a (v)andps
, i.e. clear the sign bit. For NEON it's done with vneg
+ fmaxnm
. The block to find and broadcast the horizontal max becomes an efficient sequence of permute and max instructions. gcc is able to use NEON fabs
for absolute value.
The 8 element vector on the 4 element SSE/NEON targets works well on clang. It uses a pair of instructions on two sets of registers and for the SWAP128 horizontal op will max
or or
the two registers without any unnecessary permute. gcc on the other hand really can't handle this and produces mostly non-SIMD code. If we reduce the vector length to 4, gcc works fine for SSE and NEON.
But there's a problem with if (any(cmp))
. For clang + SSE/AVX, it works well, vcmpltps
+ vptest
, with an orps
to go from 8->4 on SSE.
But gcc and clang on NEON do all the permutes and ORs, then move the result to a gp register to test.
Is there some bit of code, other than architecture specific intrinsics, to get ptest
with gcc and vmaxvq
with clang/gcc and NEON?
I tried some other methods, like if (x[0] || x[1] || ... x[7])
but they were worse.
Update
I've created an updated example that shows two different implementations, both the original and "indices in a vector" method as suggested by chtz and shown in Aki Suihkonen's answer. One can see the resulting SSE and NEON output.
While some might be skeptical, the compiler does produce very good code from the generic SIMD (not auto-vectorization!) C++ code. On SSE/AVX, I see very little room to improve the code in the loop. The NEON version still troubled by a sub-optimal implementation of "any()".
Unless the data is usually in ascending order, or nearly so, my original version is still fastest on SSE/AVX. I haven't tested on NEON. This is because most loop iterations do not find a new max value and it's best to optimize for that case. The "indices in a vector" method produces a tighter loop and the compiler does a better job too, but the common case is just a bit slower on SSE/AVX. The common case might be equal or faster on NEON.
Some notes on writing generic SIMD code.
The absolute value of a vector of floats can be found with the following. It produces optimal code on SSE/AVX (and with a mask that clears the sign bit) and on NEON (the fabs instruction).
static vNs vabs(vNs x) {
return -x < x ? x : -x;
}
This will do a vertical max efficiently on SSE/AVX/NEON. It doesn't do a compare; it produces the architecture's "max' instruction. On NEON, changing it to use >
instead of <
causes the compiler to produce very bad scalar code. Something with denormals or exceptions I guess.
template <typename v> // Deduce vector type (float, unsigned, etc.)
static v vmax(v a, v b) {
return a < b ? b : a; // compiles best with "<" as compare op
}
This code will broadcast the horizontal max across a register. It compiles very well on SSE/AVX. On NEON, it would probably be better if the compiler could use a horizontal max instruction and then broadcast the result. I was impressed to see that if one uses 8 element vectors on SSE/NEON, which have only 4 element registers, the compiler is smart enough to use just one register for the broadcasted result, since the top 4 and bottom 4 elements are the same.
template <typename v>
static v hmax(v x) {
if (VLEN >= 8)
x = vmax(x, __builtin_shufflevector(x,x, SWAP128));
x = vmax(x, __builtin_shufflevector(x,x, SWAP64));
return vmax(x, __builtin_shufflevector(x,x, SWAP32));
}
This is the best "any()" I found. It is optimal on SSE/AVX, using a single ptest instruction. On NEON it does the permutes and ORs, instead of a horizontal max instruction, but I haven't found a way to get anything better on NEON.
static bool any(vNb x) {
if (VLEN >= 8)
x |= __builtin_shufflevector(x,x, SWAP128);
x |= __builtin_shufflevector(x,x, SWAP64);
x |= __builtin_shufflevector(x,x, SWAP32);
return x[0];
}
Also interesting, on AVX the code i = i + 1
will be compiled to vpsubd ymmI, ymmI, ymmNegativeOne
, i.e. subtract -1. Why? Because a vector of -1s is produced with vpcmpeqd ymm0, ymm0, ymm0
and that's faster than broadcasting a vector of 1s.
Here is the best which()
I've come up with. This gives you the index of the 1st true value in a vector of booleans (0 = false, -1 = true). One can do somewhat better on AVX with movemask. I don't know about the best NEON.
// vector of signed ints
typedef int vNi __attribute__((vector_size(VLEN*sizeof(int))));
// vector of bytes, same number of elements, 1/4 the size
typedef unsigned char vNb __attribute__((vector_size(VLEN*sizeof(unsigned char))));
// scalar type the same size as the byte vector
using sNb = std::conditional_t<VLEN == 4, uint32_t, uint64_t>;
static int which(vNi x) {
vNb cidx = __builtin_convertvector(x, vNb);
return __builtin_ctzll((sNb)cidx) / 8u;
}