If I am given an output for a linear regression model as such:
Call:
lm(formula = Cost ~ Age + I(Age^2))
Residuals:
Min 1Q Median 3Q Max
-371.76 -218.77 -70.16 141.97 541.08
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 348.088 214.816 1.620 0.127
Age 103.003 181.969 0.566 0.580
I(Age^2) 4.713 29.248 0.161 0.874
Residual standard error: 293.2 on 14 degrees of freedom
Multiple R-squared: 0.478,Adjusted R-squared: 0.4035
F-statistic: 6.411 on 2 and 14 DF, p-value: 0.01056
How would I calculate the confidence intervals just based off that?
Essentially I am looking to calculate the below manually:
> confint(model.fit, level = 0.90)
5 % 95 %
(Intercept) -30.26946 726.44545
Age -217.50106 423.50653
I(Age^2) -46.80263 56.22808