1
#Let the random-forest model be: *rf_model*

from kale.common.serveutils import serve

kfserver = serve(rf_model) #model is now being deployed

#prepare data for prediction

data = [row.tolist() for _, row in 
train_df[predictor_var].head(10).iterrows()]

data_json = json.dumps({"instances": data})

#prediciton using deployed model:

pred = kfserver.predict(data_json)

Question 1: The returned pred is class labels: 0/1. How to return probabilities?

I tried the following way after studying: kale.common.serveutils.predict

#let HOST be the host name of deployed model

#let the URL of calling the deployed model be: http://xxx:predict

headers = {"content-type": "application/json", "Host": HOST}

pred_2 = requests.post(url = URL, data=data_json, headers=headers)

Question 2: But not clear, where to set parameter, so pred_2 will return probabilities?

Dula
  • 1,276
  • 5
  • 14
  • 23

0 Answers0