I have this snippet of code which concurrently runs a function using an input and output channel and associated WaitGroups, but I was clued in to the fact that I've done some things wrong. Here's the code:
func main() {
concurrency := 50
var tasksWG sync.WaitGroup
tasks := make(chan string)
output := make(chan string)
for i := 0; i < concurrency; i++ {
tasksWG.Add(1)
// evidentally because I'm processing tasks in a groutine then I'm not blocking and I end up closing the tasks channel almost immediately and stopping tasks from executing
go func() {
for t := range tasks {
output <- process(t)
continue
}
tasksWG.Done()
}()
}
var outputWG sync.WaitGroup
outputWG.Add(1)
go func() {
for o := range output {
fmt.Println(o)
}
outputWG.Done()
}()
go func() {
// because of what was mentioned in the previous comment, the tasks wait group finishes almost immediately which then closes the output channel almost immediately as well which ends ranging over output early
tasksWG.Wait()
close(output)
}()
f, err := os.Open(os.Args[1])
if err != nil {
log.Panic(err)
}
s := bufio.NewScanner(f)
for s.Scan() {
tasks <- s.Text()
}
close(tasks)
// and finally the output wait group finishes almost immediately as well because tasks gets closed right away due to my improper use of goroutines
outputWG.Wait()
}
func process(t string) string {
time.Sleep(3 * time.Second)
return t
}
I've indicated in the comments where I've implementing things wrong. Now these comments make sense to me. The funny thing is that this code does indeed seem to run asynchronously and dramatically speeds up execution. I want to understand what I've done wrong but it's hard to wrap my head around it when the code seems to execute in an asynchronous way. I'd love to understand this better.