I am trying to solve this systems but I get error.
I have to definition y3d=0 because y3'=0 in the equation systems. but when I did this, program cant solve. if I say y3d=y[3] then program run,
equation system that ı have to solve is like this:
dy1/dx=y2
dy2/dx=-y3*y1
dy3/dx=0
dy4/d=y1**2+y2**2 and boundary condition y1(0)=y1(1)=0 and y4(0)= 0 y4(1)=1
can scipy handle this?
import numpy as np
from scipy.integrate import solve_bvp
import matplotlib.pyplot as plt
def eqts(x,y):
y1d=y[1]
y2d=-y[2]*y[0]
y3d=0
y4d=y[0]**2+y[1]**2
return np.vstack((y1d,y2d,y3d,y4d))
def bc(ya,yb):
return np.array([ya[0],yb[3],ya[0],yb[3]-1])
x = np.linspace(0,1,10)
y= np.zeros((4,x.size))
y[2,:]=1
sol=solve_bvp(eqts,bc,x,y)
Unfortunately I get the following error message ;
ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 10 and the array at index 2 has size 1