I'm trying to write a multithreaded Nagel–Schreckenberg model simulation in c language and have some problems when a thread accesses the data which wasn't calculated yet.
Here is a working code which only parallelizes velocity calculation per line:
#define L 3000 // number of cells in row
#define num_iters 3000 // number of iterations
#define density 0.48 // how many positives
#define vmax 2
#define p 0.2
for (int i = 0; i < num_iters - 1; i++)
{
int temp[L] = {0};
#pragma omp parallel for
for (int x = 0; x < L; x++)
{
if (iterations[i][x] > -1)
{
int vi = iterations[i][x]; // velocity of previews iteration
int d = 1; // index of the next vehicle
while (iterations[i][(x + d) % L] < 0)
d++;
int vtemp = min(min(vi + 1, d - 1), vmax); // increase speed, but avoid hitting the next car
int v = r2() < p ? max(vtemp - 1, 0) : vtemp; // stop the vehicle with probability p
temp[x] = v;
}
}
for (int x = 0; x < L; x++) // write the velocities to the next line
{
if (iterations[i][x] > -1)
{
int v = temp[x];
iterations[i + 1][(x + v) % L] = v;
}
}
}
This works fine, but it's not fast enough. I'm trying to use convolution to increase the performance, but it can't read neighbor thread's data half of the time because it wasn't calculated yet. Here is the code I used:
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <sys/time.h>
#define L 4000 // number of cells in row
#define num_iters 4000 // number of iterations
#define density 0.48 // how many positives
#define vmax 2
#define p 0.2
#define BLOCKS_Y 4
#define BLOCKS_X 4
#define BLOCKSIZEY (L / BLOCKS_Y)
#define BLOCKSIZEX (L / BLOCKS_X)
time_t t;
#ifndef min
#define min(a, b) (((a) < (b)) ? (a) : (b))
#endif
#ifndef max
#define max(a, b) (((a) > (b)) ? (a) : (b))
#endif
void shuffle(int *array, size_t n)
{
if (n > 1)
{
size_t i;
for (i = 0; i < n - 1; i++)
{
size_t j = i + rand() / (RAND_MAX / (n - i) + 1);
int t = array[j];
array[j] = array[i];
array[i] = t;
}
}
}
double r2()
{
return (double)rand() / (double)RAND_MAX;
}
void writeImage(int *iterations[], char filename[])
{
int h = L;
int w = num_iters;
FILE *f;
unsigned char *img = NULL;
int filesize = 54 + 3 * w * h;
img = (unsigned char *)malloc(3 * w * h);
memset(img, 0, 3 * w * h);
for (int i = 0; i < w; i++)
{
for (int j = 0; j < h; j++)
{
int x = i;
int y = (h - 1) - j;
int color = iterations[i][j] == 0 ? 0 : 255;
img[(x + y * w) * 3 + 2] = (unsigned char)(color);
img[(x + y * w) * 3 + 1] = (unsigned char)(color);
img[(x + y * w) * 3 + 0] = (unsigned char)(color);
}
}
unsigned char bmpfileheader[14] = {'B', 'M', 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 0, 0};
unsigned char bmpinfoheader[40] = {40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 24, 0};
unsigned char bmppad[3] = {0, 0, 0};
bmpfileheader[2] = (unsigned char)(filesize);
bmpfileheader[3] = (unsigned char)(filesize >> 8);
bmpfileheader[4] = (unsigned char)(filesize >> 16);
bmpfileheader[5] = (unsigned char)(filesize >> 24);
bmpinfoheader[4] = (unsigned char)(w);
bmpinfoheader[5] = (unsigned char)(w >> 8);
bmpinfoheader[6] = (unsigned char)(w >> 16);
bmpinfoheader[7] = (unsigned char)(w >> 24);
bmpinfoheader[8] = (unsigned char)(h);
bmpinfoheader[9] = (unsigned char)(h >> 8);
bmpinfoheader[10] = (unsigned char)(h >> 16);
bmpinfoheader[11] = (unsigned char)(h >> 24);
f = fopen(filename, "wb");
fwrite(bmpfileheader, 1, 14, f);
fwrite(bmpinfoheader, 1, 40, f);
for (int i = 0; i < h; i++)
{
fwrite(img + (w * (h - i - 1) * 3), 3, w, f);
fwrite(bmppad, 1, (4 - (w * 3) % 4) % 4, f);
}
free(img);
fclose(f);
}
void simulation()
{
printf("L=%d, num_iters=%d\n", L, num_iters);
int z = 0;
z++;
int current_index = 0;
int success_moves = 0;
const int cars_num = (int)(density * L);
int **iterations = (int **)malloc(num_iters * sizeof(int *));
for (int i = 0; i < num_iters; i++)
iterations[i] = (int *)malloc(L * sizeof(int));
for (int i = 0; i < L; i++)
{
iterations[0][i] = i <= cars_num ? 0 : -1;
}
shuffle(iterations[0], L);
for (int i = 0; i < num_iters - 1; i++)
for (int x = 0; x < L; x++)
iterations[i + 1][x] = -1;
double *randoms = (double *)malloc(L * num_iters * sizeof(double));
for (int i = 0; i < L * num_iters; i++) {
randoms[i] = r2();
}
#pragma omp parallel for collapse(2)
for (int blocky = 0; blocky < BLOCKS_Y; blocky++)
{
for (int blockx = 0; blockx < BLOCKS_X; blockx++)
{
int ystart = blocky * BLOCKSIZEY;
int yend = ystart + BLOCKSIZEY;
int xstart = blockx * BLOCKSIZEX;
int xend = xstart + BLOCKSIZEX;
for (int y = ystart; y < yend; y++)
{
for (int x = xstart; x < xend; x++)
{
if (iterations[y][x] > -1)
{
int vi = iterations[y][x];
int d = 1;
int start = (x + d) % L;
int i;
for (i = start; i < L && iterations[y][i] < 0; ++i);
d += i - start;
if (i == L)
{
for (i = 0; i < start && iterations[y][i] < 0; ++i);
d += i;
}
int vtemp = min(min(vi + 1, d - 1), vmax);
int v = randoms[x * y] < p ? max(vtemp - 1, 0) : vtemp;
iterations[y + 1][(x + v) % L] = v;
}
}
}
}
}
if (L <= 4000)
writeImage(iterations, "img.bmp");
free(iterations);
}
void main() {
srand((unsigned)time(&t));
simulation();
}
As you can see, as the second block gets calculated the first one didn't probably calculate yet which produces that empty space.
I think it's possible to solve this with the convolution, but I'm just doing something wrong and I'm not sure what. If you could give any advice on how to fix this problem, I would really appreciate it.