I'm trying to calculating Multi-class Dice coefficient similar like this: How calculate the dice coefficient for multi-class segmentation task using Python?
However, this will require that the classes be integer. For me, as shown below, in the predication, the result I got, some of classes are double. Did I make a mistake or I could simply round them to the nearest integer class:
My code is below:
def down_block(x, filters, kernel_size=(3, 3), padding="same", strides=1):
c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(x)
c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(c)
p = keras.layers.MaxPool2D((2, 2), (2, 2))(c)
return c, p
def up_block(x, skip, filters, kernel_size=(3, 3), padding="same", strides=1):
us = keras.layers.UpSampling2D((2, 2))(x)
concat = keras.layers.Concatenate()([us, skip])
c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(concat)
c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(c)
return c
def bottleneck(x, filters, kernel_size=(3, 3), padding="same", strides=1):
c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(x)
c = keras.layers.Conv2D(filters, kernel_size, padding=padding, strides=strides, activation="relu")(c)
return c
def UNet():
f = [16, 32, 64, 128, 256]
#inputs = keras.layers.Input((image_size, image_size, 3))
inputs = keras.layers.Input((image_size, image_size, 1))
p0 = inputs
c1, p1 = down_block(p0, f[0]) #128 -> 64
c2, p2 = down_block(p1, f[1]) #64 -> 32
c3, p3 = down_block(p2, f[2]) #32 -> 16
c4, p4 = down_block(p3, f[3]) #16->8
bn = bottleneck(p4, f[4])
u1 = up_block(bn, c4, f[3]) #8 -> 16
u2 = up_block(u1, c3, f[2]) #16 -> 32
u3 = up_block(u2, c2, f[1]) #32 -> 64
u4 = up_block(u3, c1, f[0]) #64 -> 128
#outputs = keras.layers.Conv2D(1, (1, 1), padding="same", activation="sigmoid")(u4)
outputs = keras.layers.Conv2D(4, (1, 1), padding="same", activation="softmax")(u4)
#outputs = keras.layers.Conv2D(1, (1, 1), padding="same", activation="softmax")(u4)
model = keras.models.Model(inputs, outputs)
return model
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["acc"] )#,run_eagerly=True)
model.summary()